
Technical Report TUGRAZ-CGV-2006-01

Minimally Invasive Projector Calibration for 3D
Applications

M. Lancelle, L. Offen, T. Ullrich, T. Techmann, D. W. Fellner
{m.lancelle,l.offen,t.ullrich,t.techmann,d.fellner}@cgv.tugraz.at

Institute of Computer Graphics and Knowledge Visualization
University of Technology

Inffeldgasse 16c , A-8010 Graz
http://www.cgv.tugraz.at

c© Computer Graphics and Knowledge Visualization, TU Graz, 2006

Minimally Invasive Projector Calibration for 3D Applications

Marcel Lancelle, Lars Offen, Torsten Ullrich, Torsten Techmann, Dieter W. Fellner

Institute of Computer Graphics and Knowledge Visualization, TU Graz

Inffeldgasse 16c

8010 Graz, Austria

Tel.: +43 316 873 5401

Fax: +43 316 873 5402

E-Mail: m.lancelle@cgv.tugraz.at

Abstract: Addressing the typically time consuming adjustment of projector equipment in VR in-

stallations we propose an easy to implement projector calibration method that effectively corrects

images projected onto planar surfaces and which does not require any additional hardware. For

hardware accelerated 3D applications only the projection matrix has to be modified slightly thus

there is no performance impact and existing applications can be adopted easily.

Keywords: projector calibration, virtual reality

1 Introduction

In every virtual environment like CAVETM installations or power walls the projected images need

to be aligned accurately at the edges from one screen to the next. An accurate manual alignment

takes a long time and has to be redone whenever the setup changes or maintenance tasks have to

be performed, e.g. a mirror is moved by accident or a light bulb is exchanged etc.

In contrast, the presented algorithm only needs roughly aligned projectors with a little overlap

at each edge of the target region to determine the calibration’s fine tuning. Using this approach the

whole calibration process takes about one minute per projector.

The presented software calibration calculates a calibration matrix based on a few user inputs.

The resulting matrix can be integrated seamlessly into a hardware accelerated render pipeline.

The calibration is not perfect as it can only handle affine distortions, but due to its optimal

integration into the render pipeline it is a good compromise between high performance and desired

accuracy.

2 Related Work

The goal of virtual reality (VR) is the synthesis of a convincing illusion within a virtual environ-

ment. The most important aspect in a VR system is the quality of vision because it has the greatest

and most immediate impact on the human sensory system [BSdV01]. Besides the displayed con-

tent the display quality and especially its correct calibration is of big importance.

Current calibration methods can be subdivided into three groups. The first and most frequently

used method is the calibration by hand which is a non-practicable method for large power walls or

caves.

Contrary to manual calibration the second group consists of methods with an automatic ap-

proach using embedded cameras [LS04], [RB01] or other sensor systems [LDMA +04]. These

systems have the great advantage to work out of the box. Unfortunately, they need specialized or

modified hardware and projectors.

To overcome this disadvantage the third group uses standard video cameras that are neither

embedded in the projector nor rigidly attached to it. These systems are not only suitable for mo-

bile activities and applications [SSM01], but also for fixed installations [BMY05]. Especially in

virtual 3D environments in which cameras are already installed – e.g. for tracking purposes – this

approach is widely used [SHVG02], [GWN+03].

Our method is a semi-automated calibration procedure without additional hardware. The main

difference to most established systems is its seamless integration into the render pipeline, which is

similar to an approach by Ramesh Raskar [Ras00] who also uses a projection matrix modification

to implement a single pass projector calibration.

3 Calibration matrix

In a hardware accelerated 3D application a pointp is transformed toq = (qx,qy,qz,qw) = P·M · p

with the modelview matrix1 M and the projection matrixP. The perspective division leads to

qp = (qx/qw,qy/qw,qz/qw,1) where the first two elements are the normalized screen coordinates

qs = (qx/qw,qy/qw).
We now use a 4x4 calibration matrixC that is applied after all other coordinate transformation

matrices but before the perspective division. The corrected pointr = C · P · M · p leads to the

normalized screen coordinatesrs = (rx/rw, ry/rw).

1We use the OpenGL notation.

For at least four reference pointsqsi the user specifies corrected pointsrsi . The calibration matrix

C =

a b 0 d

e f 0 h

i j 1 0

m n 0 1

is calculated such that allqsi will be projected as close as possible to the target positionsrsi (see next

section). This matrix is a combination of the matrices shown in Figure1 (C=CT ·CSh·CS·CTr ·CR).

CTr =

1 0 0 dTr

0 1 0 hTr

0 0 1 0

0 0 0 1

 CS =

aS 0 0 0

0 fS 0 0

0 0 1 0

0 0 0 1

CSh=

1 bSh 0 0

eSh 1 0 0

0 0 1 0

0 0 0 1

 CR =

aR bR 0 0

eR fR 0 0

0 0 1 0

0 0 0 1

CT =

aT 0 0 dT

0 fT 0 hT

iT jT 1 0

mT nT 0 1

Figure 1: Matrices to handle translation, scaling, shearing, rotation and trapezoid deformation.

These effects occur when projecting on a planar surface and can be corrected with our calibration

method.

a, b, e and f need to be optimized to correct for scaling, shearing and rotation,d andh belong

to the translation. Usingm and n it is possible to correct for scaling depending on the screen

coordinates which represents a trapezoid distortion (see Figure1).

The latter case is more complex than the previous ones. The distortion is non-linear and addi-

tional scaling and translational effects occur whenm 6= 0 or n 6= 0 [FH05]. Also thez coordinates

are affected during perspective division so that problems with the clipping planes may occur (in

OpenGL pixels with a depth value outside the range[−1..1] are clipped, see [Boa93]). Since a

shearing of the near clipping plane is undesired in most applications we also seti and j to m and

n respectively to realign the near clipping plane (which in turn increases distortions of the far

clipping plane). See Appendix A for more details.

Typically, a calibration matrix in our setup is close to the identity matrix like in this example:
1−0.0420 −0.0042 0 0.0175

0.0013 1−0.0363 0 0.0126

−0.0006 0.0039 1 0

−0.0006 0.0039 0 1

4 Calibration procedure

The general idea is to project a mouse cursor on the screen and just click on physical reference

positions like the corners of the target screen. The computer then calculates the calibration matrix

numerically so that the sum of the square distances of the transformed reference points to the

selected positions is minimal.

To get precise physical locations of the reference points we use the corners of the projection. A

normal mouse cursor wouldn’t be visible at each corner and only allows pixel precise acquisition.

Instead, for each corner, we use multiple lines at different angles that are projected and moved by

the user into the corner one after another. The average of the pairwise intersections of these lines

is used as the position for that corner with sub pixel precision. In our case it is not convenient to

use a mouse so we chose a wireless game pad.

The calibration matrix is calculated by optimizing the valuesa, b, d, e, f , h, m andn with

the steepest descent algorithm so that the sum of squared distances from projected points to their

target location is minimal (see Appendix B for more details). Afterwardsi and j are set tom and

n respectively.

5 Using the Calibration

Whenever the projection matrix of the graphics hardware is changed we need to premultiply it with

the calibration matrix so that the new projection matrix consists of the combination of the original

projection matrix and the calibration matrix. In case of OpenGL the C code could look like this:

glMatrixMode(GL PROJECTION);

glLoadIdentity();

glMultMatrixf(C); // <-- new

gluPerspective(60, 1, 0.1, 100);

...

This method can also be used to modify aspect ratios or to align the content for tiled displays

such as power walls. In the latter case additional modifications are necessary to handle blending

and clipping of the overlapping regions.

6 Results

Figure 2: Stereo projections without (left) and with calibration (right) in our virtual environment.

With little effort we managed to implement the calibration that greatly improves the visual result

of the projection.

There are two major drawbacks with our approach. The first is that some pixels are wasted. The

overlapping pixels at the border are projected onto the canvas. Hardware resolution and computing

power is thus spent on pixels invisible to the user - however, typical ’waste’ in our installation is in

the order of 5%. The second drawback is that the calibration can only correct all distortion effects

when the projection surface is planar.

The advantages are that

• only little effort and minimal modifications are necessary for 3D applications,

• the calibration process is significantly shortened and, thus, significantly less expensive,

• there is no influence on the performance and

• there is no pixel remapping that would lead to aliasing.

We successfully implemented the calibration for our virtual environment to drastically shorten the

maintenance effort and improve the visual quality of the system (see Figure2).

A Details on shearing of clipping planes

With introducingm andn in the calibration matrix

C =

1 0 0 0

0 1 0 0

0 0 1 0

m n 0 1

the resulting depth valueq = z/w will be changed toq′ = z/(mx+ny+w) .

Raskar addresses this problem by introducingk = 1−|m|− |n| to keep the whole visible range

from the case without calibration.

C =

1 0 0 0

0 1 0 0

0 0 k 0

m n 0 1

q = z/w becomesq′ = kz/(mx+ny+w) = (1−|m|− |n|)∗z/(mx+ny+w)

But still the near clipping plane is sheared resulting in strong artefacts with intersecting objects,

especially with multiple projectors. Thus we decided to realign the front clipping plane withi = m

and j = n:

C =

1 0 0 0

0 1 0 0

i j 1 0

m n 0 1

q = z/w now becomesq′ = (ix+ jy+z)/(mx+ny+w) = (mx+ny+z)/(mx+ny+w) so that at

the near clipping plane withd = 1 alsod′ = 1.

B Details on our calibration matrix optimization algorithm

To help understanding the algorithm and facilitate a reimplementation we provide this very simple

source code that we use for the computation of the calibration matrix. Note that there are many

possible ways like sophisticated automated approaches.

To use the following c++ code for the optimization you need to fill the arraycornerswith the

pixel positions transformed into the range[−1,1], [−1,1]. After calling the functionoptimize() the

result will be stored incm.

// c++ source code snippet for a simple projector calibration,

// M. Lancelle, TU Graz

// calibration matrix:

// a b 0 d

// e f 0 h

// m n 1 0

// m n 0 1

// all corners in -1 .. 1 coordinate system

struct pointStruct {double x, y;};
pointStruct dCorners[4] = {{-1,1}, {1,1}, {1,-1}, {-1,-1}};
pointStruct corners[4]; // new corners selected by user

double cm[8] = {1, 0, 0, 0, 1, 0, 0, 0}; // will hold variable

// components of final matrix: a, b, d, e, f, h, m, n

// ’cost’ function to minimize

double calcValue(double a, double b, double d, double e, double f,

double h, double m, double n) {
double distanceFromCorners = 0; // sum of squared distances

for (int pnum=0; pnum<4; pnum++) {
// transformed coordinates (should match ’corners’ as good

// as possible)

double w = m*dCorners[pnum].x + n*dCorners[pnum].y + 1;

double tx = (a*dCorners[pnum].x + b*dCorners[pnum].y + d) / w;

double ty = (e*dCorners[pnum].x + f*dCorners[pnum].y + h) / w;

double dst = tx - corners[pnum].x;

distanceFromCorners += dst*dst;

dst = ty - corners[pnum].y;

distanceFromCorners += dst*dst;

}
return distanceFromCorners;

}

// Simple optimization: step along steepest gradient with fixed step

// size. Not brilliant but simple and works :)

void optimize() {
double stepSize = 0.1;

double grad[8];

while (stepSize > 0.000001) {
// compute gradient

double currentValue = calcValue(cm[0], cm[1], cm[2], cm[3],

cm[4], cm[5], cm[6], cm[7]);

grad[0] = calcValue(cm[0] + 0.1*stepSize, cm[1], cm[2], cm[3],

cm[4], cm[5], cm[6], cm[7]) - currentValue;

grad[1] = calcValue(cm[0], cm[1] + 0.1*stepSize, cm[2], cm[3],

cm[4], cm[5], cm[6], cm[7]) - currentValue;

grad[2] = calcValue(cm[0], cm[1], cm[2] + 0.1*stepSize, cm[3],

cm[4], cm[5], cm[6], cm[7]) - currentValue;

grad[3] = calcValue(cm[0], cm[1], cm[2], cm[3] + 0.1*stepSize,

cm[4], cm[5], cm[6], cm[7]) - currentValue;

grad[4] = calcValue(cm[0], cm[1], cm[2], cm[3],

cm[4] + 0.1*stepSize, cm[5], cm[6], cm[7]) - currentValue;

grad[5] = calcValue(cm[0], cm[1], cm[2], cm[3], cm[4],

cm[5] + 0.1*stepSize, cm[6], cm[7]) - currentValue;

grad[6] = calcValue(cm[0], cm[1], cm[2], cm[3], cm[4], cm[5],

cm[6] + 0.1*stepSize, cm[7]) - currentValue;

grad[7] = calcValue(cm[0], cm[1], cm[2], cm[3], cm[4], cm[5],

cm[6], cm[7] + 0.1*stepSize) - currentValue;

// step in direction of gradient with length of stepSize

double gradSquaredLength = 0;

for (int i=0; i<8; i++) gradSquaredLength += grad[i]*grad[i];

double gradLength = sqrt(gradSquaredLength);

for (int i=0; i<8; i++) cm[i] -= stepSize * grad[i]/gradLength;

stepSize *= 0.99;

}
}

References

[BMY05] Michael Brown, Aditi Majumder, and Ruigang Yang. Camera-based calibration

techniques for seamless multi-projector displays.IEEE Transactions on Visualiza-

tion and Computer Graphics, 11:193 – 206, 2005.

[Boa93] Opengl Architecture Review Board.OpenGL Reference Manual. Addison-Wesley

Publishing Company, 1993.

[BSdV01] R.G. Belleman, B. Stolk, and R. de Vries. Immersive virtual reality on commodity

hardware. Proceedings of the 7th annual conference of the Advanced School for

Computing and Imaging, 7:297–304, 2001.

[FH05] Gerald Farin and Dianne Hansford.Practical Linear Algebra, A Geometry Toolbox.

A K Peters, Ltd., 2005.

[GWN+03] M. Gross, S. Ẅurmlin, M. Naef, E. Lamboray, C. Spagno, A. Kunz, E. Koller-Meier,

T. Svoboda, L. Van Gool, S. Lang, K. Strehlke, A. Vande Moere, and O. Staadt. blue-

c: A spatially immersive display and 3d video portal for telepresence.Proceedings

of ACM SIGGRAPH 2003, 22:819–827, 2003.

[LDMA +04] J.C. Lee, P.H. Dietz, D. Maynes-Aminzade, R. Raskar, and S.E. Hudson. Auto-

matic projector calibration with embedded light sensors.ACM Symposium on User

Interface Software and Technology, 1:123–126, 2004.

[LS04] B. Li and I. Sezan. Automatic keystone correction for smart projectors with embed-

ded camera.Proceedings of ICIP ’04, International Conference on Image Process-

ing 2004, 4:2829– 2832, 2004.

[Ras00] Ramesh Raskar. Immersive planar display using roughly aligned projectors.Pro-

ceedings of IEEE Virtual Reality, 2000, 1:109–116, 2000.

[RB01] R. Raskar and P.A. Beardsley. A self-correcting projector.IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, 2:504–508, 2001.

[SHVG02] Tomas Svodoba, Hanspeter Hug, and Luc Van Gool. ViRoom - Low Cost Syn-

chronized Multicamera System and its Self-Calibration.Pattern Recognition, 24th

DAGM Symposium, 24:515–522, 2002.

[SSM01] R. Sukthankar, R. Stockton, and M. Mullin. Smarter Presentations: Exploiting ho-

mography in camera-projector systems.Proceedings of International Conference

on Computer Vision, 1:247–253, 2001.

	Introduction
	Related Work
	Calibration matrix
	Calibration procedure
	Using the Calibration
	Results
	Details on shearing of clipping planes
	Details on our calibration matrix optimization algorithm

