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Abstract

This thesis covers research on new and alternative ways of inter-
action with computers. Virtual Reality and multi touch setups
are discussed with a focus on three dimensional rendering

and photographic applications in the field of Computer Graphics.

Virtual Reality (VR) andVirtual Environments (VE)were once thought
to be the future interface to computers. However, a lot of problems
prevent an everyday use. This work shows solutions to some of the
problems and discusses remaining issues.

Hardware for Virtual Reality is diverse and many new devices are
still being developed. An overview on historic and current devices
and VE setups is given and our setups are described. The DAVE, an
immersive projection room, and the HEyeWall Graz, a large high
resolution display with multi touch input are presented. Available
processing power and in some parts rapidly decreasing prices lead to
a continuous change of the best choice of hardware. Amajor influence
of this choice is the application. VR and multi touch setups often
require sensing or tracking the user, optical tracking being a common
choice. Hardware and software of an optical 3D marker tracking and
an optical multi touch system are explained.

The Davelib, a software framework for rendering 3Dmodels in Virtual
Environments is presented. It allows to easily port existing 3D appli-
cations to immersive setups with stereoscopic rendering and head
tracking. Display calibration and rendering issues that are special to
VR setups are explained. User interfaces for navigation and manipu-
lation are described, focusing on interaction techniques for the DAVE
and for multi touch screens. Intuitive methods are shown that are
easy to learn and use, even for computer illiterates. Exemplary appli-
cations demonstrate the potential of immersive and non-immersive
setups, showing which applications can most benefit from Virtual En-
vironments. Also, some image processing applications in the area of
computational photography are explained, that help to better depict
the captured scene.
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1
Introduction

Adesktop PC with keyboard and mouse is certainly quite uni-
versal. However, it is easy to see that for some tasks, it is
not the best interface. Computing power has increased a lot

in the past decades, but user interfaces have hardly changed. This
well known finding among Human Computer Interaction (HCI) re-
searchers has led to a number of user interface concepts for specific
purposes.

This thesis focuses on the display and interaction of 3D content. How
can visual perception of 3D data be improved? How is immersion into
a virtual world possible? How can a user explore, navigate and ma-
nipulate the data in the best way? Which hardware is necessary? The
content of this work shows steps on theway to answer these questions.

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Covered Work . . . . . . . . . . . . . . . . . . . . . . . . . 4
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1.1 MOTIVATION
Users can comfortably work or play on a PC for many hours using a
mouse and a keyboard. In most 2D and 3D applications, tasks can be
accomplished quickly and precisely. Complex graphical user inter-
faces (GUIs) are possible and there are standard GUI elements such as
text input fields or scroll bars that are commonly known. Especially
pushed by the games industry, normal PCs are nowadays equipped
with powerful 3D graphics hardware, developed and optimized for
real-time rendering of shaded and textured triangle meshes.

Limitations of Conventional Desktop Setups. Many of such ap-
plications are or at least seem to be complex to novice users. The
inhibition threshold may be too high, especially for people with lim-
ited experience with PCs. They may be overwhelmed by the interface
and be afraid not to be able to use the system or even to break some-
thing. Capabilities of the programs are unclear and the interaction
is often indirect and limited. Players of 3D games can be observed
instinctively moving their head sideways in order to look around a
corner, without the computer reacting on this subconscious request
by the user. Two dimensional interfaces for three dimensional worlds
lack a degree of freedom, resulting in a less intuitive control. Also,
the interaction is performed dislocated from the displayed content,
requiring a further indirection. Immersion, the sense of feeling to
really be in a virtual world or 3D scene, is also limited. A very limited
field of view and the lack of parallax and stereoscopic effects only
allow a low level of spatial immersion.

Novel User Interfaces. For suited applications, we would like to
immerse in 3D worlds, exploring and modifying them in an easy way,
even for computer illiterates. We would also like to interact with large
amounts of data for non-immersive applications in an intuitive way.
Imaginative concepts for natural interaction in public spaces are given
by Valli in [Val07], such as technology enhanced spaces that react on a
user, provoking spontaneous interactions. A large variety of different
devices exists, but how can they be used best? We tried out many
different setups and applications in order to understand and analyze
problems and find similarities to develop generalized solutions.

Computational Photography. In digital photography, the images
are often still used like in analog film photography. However, with the
help of image processing, some hardware restrictions can be bypassed
by using multiple photos, usually taken with different settings. This
area ofComputational Photography slowlymakes its way to the common
users, panoramic image stitching being a good example. We would
like to explore more of these new ways to make additional use of
digital photos.

1.1. MOTIVATION 3



Contributions. This work presents three major contributions on the
way to fulfill these goals:

• Hardware and software developments for the DAVE, an immer-
sive environment.

• The HEyeWall Graz, a large high resolution multi touch screen.
• Improvements for applications in the area of Computational

Photography.

1.2 COVEREDWORK

Figure 1.1: The basic components of a Virtual Environment. All of these
aspects are covered in the following chapters.

The subjects illustrated in the figure above represent the building
blocks of Virtual Environments and related applications. They are
covered in the following chapters, but first, introductions to Virtual
Reality and Computational Photography are given.

1.3 VIRTUAL ENVIRONMENTS AND VIRTUAL REALITY

The term ’Virtual Reality’ appeared in the ies, meaning a fictional
world, later also described with cyberspace. Only for about  years it
is also used for its second and now more common scientific meaning.
Similar to the term robot, high expectations raised by science fiction
literature and movies led to blatant misconceptions in the public,
concerning the actual capabilities of VR. But also in science the term
is fuzzy, as illustrated in the figure below.

Mixed Reality (MR)

Real
Environment,
Reality

Augmented
Reality (AR)

Augmented
Virtuality (AV)

Virtual
Environment,

Virtual
Reality (VR)

Figure 1.2: The virtuality continuum. Many varieties of mixed setups ex-
ist between complete reality to pure virtual reality. They are collectively
referred to as Mixed Reality.

An example is a scene with a real person in a real room, reality. If
with a semi transparent display, the real room is visible but instead
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of the real person a virtual person, an avatar is virtually augmented
into the room, it is called Augmented Reality (AR). An opaque display
with a virtual room and a camera image or 3D scan of a real person is
called Augmented Virtuality. Finally, the term Virtual Reality is used
when all visible objects are virtual. Combining both real and virtual
objects, the environment can collectively be calledMixed Reality.
Virtual Environments have been around for a long time. The term
itself is fuzzy, used both for describing the virtual world rendered by
the displays as well as the complete setup including the hardware.
They are used by the industry only for very specific problems and
got rather out of fashion in the last decade. Important reasons are the
requirement of a large room, high costs and effort for hardware and
maintenance and a low software interoperability due to the diversity
of setups. Often, not enough benefit is expected to justify the setup.
However, these problems are worked on and hardware prices con-
tinuously drop. Eventually, VR will be more accessible to a lot more
people and may see its revival. In fact, with 3D TVs, projectors and
game console controllers and sensors, the basic hardware components
already come into the living room. But which “killer application” will
render the technology useful for a large number of people?
Augmented Reality is nowmuch more popular, still being in the hype
phase. Especially important is the fact, that a growing number of
people owns a smartphone or a PC with a webcam and is already
able to download and try an AR application. While we follow the
developments in AR with interest, the field is sufficiently different
to VR. Most notably, a live camera image is used and modified to
superimpose virtual content. We do not employ such hardware and
applications and in this work, do not cover any part unique to AR.
Commercial VR hardware and both free and commercial software
frameworks are already available. Why can they not just be used?
Unfortunately, it will not just work out of the box. We discuss and
address the problems involved. Different ways for software develop-
ment or ports are examined. The operation and maintenance of such
systems is discussed. We improved the technology and interactions
to solve the occurring problems.
With our software, building and running a virtual environment be-
comes definitely affordable.

1.4 COMPUTATIONAL PHOTOGRAPHY AND IMAGE
PROCESSING

Photographic acquisition techniques become more and more popular
for 3D scenes or high resolution 2D content. A few applications for
image processing are shown that are loosely linked to VR. As an
example, image alignment for high dynamic range (HDR) imaging is
shown. HDR imaging and displays are also very interesting for VR.
Similarly, image alignment is helpful to create content well suited for
our multi touch setups.

1.4. COMPUTATIONAL PHOTOGRAPHY AND IMAGE PROCESSING 5



2
Hardware Devices

Virtual environment hardware usually consists of several off-
the-shelf components, combined with a few custom compo-
nents for the remaining requirements. With a large variety,

such setups in laboraties of research facilities and industry are in-
dividual, tailored to a specific problem or interest. Of course also
availability and pricing influences the choice of the hardware.
This chapter first describes the purpose of the devices and lists a
selection of such hardware setups. Then, in more detail, setups and
devices are described that we tested or built on our own, mainly the
DAVE and the HEyeWall Graz.

2.1 Hardware Overview . . . . . . . . . . . . . . . . . . . . . 8
2.1.1 The History of Virtual Reality . . . . . . . . . . . . 8
2.1.2 Output Devices . . . . . . . . . . . . . . . . . . . . 10

2.1.2.1 Stimulating Vision: Interactive Displays 10
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2.2.5.1 Mini Dome Concept . . . . . . . . . . . 29
2.2.5.2 Car Simulator Concept . . . . . . . . . . 29
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2.3.7 Camera and Projector Mounting . . . . . . . . . . 41
2.3.8 Outlook: The Ideal Hardware . . . . . . . . . . . . 42
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2.1 HARDWARE OVERVIEW

In this section, different types of both historical and current input and
output devices are listed. With the emphasis on displays, devices for
other human senses are presented in less detail.

2.1.1 The History of Virtual Reality

The ideas for today’s VR devices are often surprisingly old. The
historical and at that time revolutionary ideas are presented separately
from the modern devices as it is easier to see the development in time
as well as the combination of several devices resulting in a VR like
setup.
The following description lists selected early important key inventions
leading to modern audio and video technology, eventually making
VEs possible. The development of computer technology is crucial,
but out of scope of this document.

Figure 2.1: A zoetrope, a spinning
cylinder with animation frames on
the inside. Looking through the
slits when it spins fast enough, an
animation is perceived (modified
image, original by [Dun04]).

An early form of a zoetrope (see side figure) was invented around 

AD in China (see [Nee62]). In the mid 17th century the magic lantern
was invented, the first projection system using a lens. In the ies,
animation using slits in rotating discs or cylinders with drawn anima-
tionswere reinvented (phenakistoscope in , zoetrope or stroboscope in
), founding the basics of today’s animated displays. Sir Charles
Wheatstone first presented a device to view a stereo image pair in
, the stereoscope [Cro92]. It lead to stereoscopic photography in
 and smaller viewing devices in  by David Brewster. In
the s, 360 degree paintings were shown on panoramic murals
surrounding the spectators.
Mechanical machines reproducing sound are around for over a mil-
lennium. In  the earliest audio recording device was invented by
Édouard-Léon Scott de Martinville. Surprisingly, it took until 
to combine projection and animation to a device called zoopraxiscope.
Only later in  the flip book animation was invented. In 

Lippmann introduced autostereoscopic photography using a lens
array, called integral photography [Lip08]. In the s, vehicle simula-
tors were introduced [Ell94] and the Zeiss company used domes as
projection screens [SL98].

Figure 2.2: First patent for an HMD
in  by McCollum [McC45].

Head Mounted Displays (HMDs) were first described for telepres-
ence or stereo movie applications. A patent by Henry J. de N. McCol-
lum [McC45] in  first mentions an HMD and another patent by
Morton L. Heilig [Hei60] in  extends this idea. Even though both
patents describe stereo HMDs, the first one that was physically built
was monoscopic, the Headsight Television System [CB61] by Charles P.
Comeau and James S. Bryan at Philco in .
The Sensorama Simulator [Hei62], patented in  by Morton L.
Heilig is arguably the first VR installation, even though it is a mechan-
ical device.

8 2. HARDWARE DEVICES



Figure 2.3: Sensorama by Morton L. Heilig in 1961/1962, the first interactive virtual reality setup, showing a
motorbike ride through New York City. Four other films were available. The simulation with a stereo film also
includes exhaust smell and wind. From left to right: photo, side view, frontal view of the head piece, the film
box and mechanism [Hei62].

Figure 2.4: The Sword of Damocles,
the first HMD to show computer
generated content, by Sutherland
in 1968 [Sut68].

In , Ivan Sutherland presents his vision for future displays in
The Ultimate Display [Sut65], pretty much describing a virtual envi-
ronment. In , he presents the Binocular Omni Orientation Mon-
itor (BOOM) [Sut68], an early see through HMD. Together with its
mechanical head position measurement system it is attached to the
ceiling, therefore also called the Sword of Damocles. The 3D wand,
still a state of the art input device in VEs, was first presented in the
Sorcerer’s Apprentice system [Vic72] by Donald Lee Vickers in . It
was used in combination with Sutherland’s HMD.
From the ies dome projection screens were used for immersive
environments in research and military training [SL98].
In  the virtual retinal display was presented by Kazuo Yoshinaka
at Nippon Electric. The image is directly generated on the retina by
a focused light beam. Today, technical problems still exist but the
potential advantages of small, light weight devices with a low energy
consumption are promising.
At SIGGRAPH in  the CAVE system [CNSD∗92],[CNSD93] was
presented, an immersive cubic room with three rear-projection side
walls and a down-projection floor. With HMDs, big problems of the
time were issues due to tracking accuracy and latency. The CAVE
solved these problems, as for a head rotation, the problems have
a much smaller influence on the images. Further multi projector
setups were developed to adapt to different needs, like the Power-
Wall in  [Pow94], a high resolution tiled projector screen, the
ImmersaDesk [CPS∗97] in , a 45◦ table setup and the Infinity-
Wall [CPS∗97] in , an extension to the PowerWall.
In  the first dynamic HDR display was presented [SWW03], pro-
viding improved contrast and brightness by several orders of magni-
tude compared to conventional displays.
Around , hand held devices became powerful enough to be used
as a platform for Augmented Reality. The low priced compact systems
are also much more accepted in an every day situation than an HMD
and quickly became the hardware of choice in that field.

2.1. HARDWARE OVERVIEW 9
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Figure 2.5: Time line of selected inventions that are important for VR.

The time line above summarizes the important historical develop-
ments.

2.1.2 Output Devices

Output devices enable the program to communicate its state to the
environment. To express an information to a user, human senses must
be stimulated. How this can be achieved is discussed below, focusing
on vision.

2.1.2.1 Stimulating Vision: Interactive Displays

For a majority of VEs, the key aspect is the optical display, matching
the importance of vision for people exploring an unknown environ-
ment. Today, there are two important categories of immersive VR
displays: large display screen setups and HMDs, i.e. small screens
directly in front of the eyes.
For human vision, many effects come into play. There is no display
today that can match the capabilities of the human eye. Resolution,
contrast, absolute brightness, field of view, stereoscopic view with
accommodation and motion parallax are features that are available
individually, but it is not yet possible to integrate all of them in a single
device. However, many effects can be handled to a satisfying extend.
The following figure gives an overview on important available display
technologies and options.

10 2. HARDWARE DEVICES



HMDs

Screens and Projections

Holographic Displays
Volumetric Displays
– Rotating spiral screen
– PureDepth’s Multi-Layer LC Display
– Rotating LCD
– Laser focusing on points in fog volume
– IR laser detects dust in air and turns on
   visible laser when at correct position

Imaging technologies
Projectors (rear / front projection)
 – LCD
 – DLP
 – LED
 – Laser
 – HDR (2 modulators + high luminance)
Screens
 – TFT/LCD
 – Plasma
 – OLED
 – HDR (2 modulators + high luminance)

Unconventional projection surfaces
– Mist/fog/water ’curtains’
– Holoscreens (prisms)

– See through / opaque
– Retinal Scanning Laser Display
– Tiled displays (resolution, FoV)

Stereoscopic displays with glasses
 – Anaglyph (red-cyan / spectral comb: Infitec)
 – Polarization (linear / circular)
 – Pulfrich effect (dark and light filter)
 – Diffraction grating (ChromaDepth)
 – Time interlaced (LCD shutter glasses)

Autostereoscopic displays
 – Lenticular lens vs. parallax barrier
 – Horizontal vs. complete parallax (lens array)
 – Light field displays

Figure 2.6: An overview of selected relevant technologies and options for
(semi) immersive displays.

Figure 2.7: Anaglyph and polarized
glasses are common technologies to
realize cheap stereoscopic displays.

Many of these technologies can be combined. As an example, it is
possible to build a stereoscopic or even an autostereoscopic HDR
projection display, but to our knowledge it has not been constructed
yet. A less useful example of an existing combination is a stereoscopic
multi touch table. With the users standing next to the table, the large
angle to the screen requires head tracking and two separate images
for each observer. Furthermore, touch interaction can only occur
on a single plane. Objects that appear above the screen surface are
unsuited since a hand or arm will not be correctly occluded. It is hard
to find an application to justify the amount of effort for this setup.
Other interesting developments in display technologies are transflex-
ive and e-paper displays that work well in bright environment light
situations. By reflecting the existing light of the environment, they
consume very little power.

Overlapping images
displayed on the
screen.
The images switch
so fast that without
glasses the images
seem to be blended.

time

16ms

projector 1: displays image for left eye alternating with a black image

projector 2: displays image for right eye alternating with a black image

glasses: are opaque for one eye at a time, controlled by an infrared
shutter signal that is synchronized with the projectors

16ms 16ms 16ms

Figure 2.8: Illustration of a time interlaced stereo display.

Projection technology. The major drawback of projectors is their
limited brightness. Projectors operate within their thermal limits,
light bulbs are expensive and need to be replaced after a few thousand
hours of life time. Lasers as light source offer advantages but are even

2.1. HARDWARE OVERVIEW 11



more expensive. However, this is about to change, as the laser life time
increases significantly. LED projectors are now getting interesting,
but still suffer from rather low light intensities.

Projection screen geometry. Most projection screens are flat, but
also curved screens are used, e.g. in dome theaters or flight simulators.
Compared to a CAVE, no visible edges exist. Even arbitrary geometry
may be used as a projection surface. With cleverly designed content,
this may lead to impressive results, as e.g. projections on buildings
show with arts or advertisement. Finally, neither the projector nor
the screen have to be fixed. With appropriate tracking, the projection
can be adapted to remain registered relative to the screen surface.

Projection screen material. Screen materials can be divided into
reflective screens for front projection and translucent screens for rear
projection. Different gain factors are available and can be used to
increase the brightness, but at the same time restricting the viewing
angle. When using polarization, many translucent screens work more
or less well, whereas for front projection silver screens are essential
to retain polarization. Holographic screens are holographic grated
prisms on a translucent sheet, directly reflecting light from a projec-
tion angle that can be quite different from the screen normal. Mist
and fog can also be used as mostly flat screens or even volumetric
screens.

Vergence-Accommodation conflict. Almost all current stereoscopic
displays share a common problem: Accommodation is not han-
dled correctly. While usually accommodation and vergence act to-
gether, in screen based or HMD devices the eyes focus on a fixed
screen distance rather than the 3D object distance, causing discom-
fort and eye strain [RMWW94],[LIH07]. This is called the vergence-
accommodation conflict.

3D glasses

screen

real object virtual object

image seen by
the left eye

image seen by
the right eye

image seen by
the left eye

image seen by
the right eye

HMD

displays

virtual object

image seen by
the left eye

image seen by
the right eye

Figure 2.9: Stereoscopic viewing (from left to right): the real stereoscopic
effect, a stereoscopic display with screens and glasses and an HMD. The
displays can provide correct vergence but fail to provide correct accommo-
dation.

One possible solution is a fast
switching lens and time inter-
laced rendering of several depth
layers [LHH∗09]. It uses a stack
of lenses, each consisting of a
birefringent material and a fer-
roelectric liquid-crystal polariza-
tion modulator. It seems quite
possible to eventually integrate
such lenses in glasses and to
build e.g. a CAVE with this tech-
nology and fast projectors. A

brighter display also reduces the problem, as the pupil gets smaller
and the depth of field larger. Unfortunately, excessive costs make
this simple idea for an enhancement infeasible for many projection
setups.
Also, the retinal scanning laser displays have a related problem: Their
image always appears in focus. Deformable mirror surfaces can pro-
vide physical defocus. Additional software generated defocus cues
like software depth of field blurring may be a solution when vergence
can be measured [SSKS03], [SSSF04].
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Holographic and Volumetric displays provide better or correct accom-
modation and vergence cues [HGAB08], but need a lot of hardware
effort. Also, they can only provide correct occlusion information for
a single viewpoint at a time.

CAVE vs. HMD. CAVEs and HMDs are the primary choices for
immersive VR setups. The following list shows the major differences.

In favor of the CAVE In favor of the HMD

Tracking accuracy and latency
problems have less impact in a
CAVE.

CAVE needs a large room,
takes up lots of space.

Size perception & level of immer-
sion are better in a CAVE. HMDs are easy to transport.

The CAVE provides a large field
of view.

HMDs are usually less expen-
sive.

In the CAVE the user can see the
own body.

HMDs consume a lot less
power.

A high resolution can easier be
realized in a CAVE.

HMD may need calibration be-
fore each usage.

HMD is heavy and uncomfort-
able.

Figure 2.10: Feature comparison of CAVEs versus HMDs.

High Dynamic Range Displays. HDR displays with constant illu-
mination need two light modulators [See09]. Such a design needs
lots of light and usually, most of the light is absorbed in the display.
The key for efficient HDR displays is a modulated light generation
combined with an additional modulator, like a coarse LED matrix
as background illumination combined with an LCD [SHS∗04]. Espe-
cially designed for HDR projection, a MEMSmirror array can be used
to unevenly distribute the available light before it passes through the
second modulator [HS08], [HSHF10]. Another option for an HDR
display is to project an image on a modulated reflectance screen,
like screens in e-books with e-ink, or just a paper print for a static
image [BI08].

2.1.2.2 Output devices For Other Senses

Vision is arguably the most important sense to be stimulated in a
virtual environment. However, it is reasonable to stimulate more
senses than just vision in order to increase the level of immersion.
There is no clear definition of a sense. The following list shows the
human senses that are commonly recognized as such, together with
important technologies that can be used to stimulate each sense, more
details follow below.
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Human Senses Important Technologies

Vision (sight) ⇒ Displays, see above.

Audition (hear-
ing)

⇒

Audio (synthesized or prerecorded)
sound or voice: electro-mechanical
speaker, ear phones, wave field syn-
thesis, HRTF

Tactition (touch) ⇒
Haptic devices, fan wind, mist/
water spray, Ultrasound Tactile Dis-
play [HTNS09]

Gustation (taste) ⇒ Artificial aroma

Olfaction (smell) ⇒ Olfactory device/gun

Proprioception
(limb locations
and motions and
muscular force
within the body)

⇒
Locomotion devices, walking simu-
lators (2D treadmill, VirtuSphere),
swimming simulator

Kinaesthesia (ac-
celeration)

⇒

Motion platforms and haptic displays,
handheld force display by nonlin-
early perceived asymmetric accelera-
tion [AAM05]

Equilibrioception
(balance)

⇒ Influence on balance by strong mag-
netic fields

Thermoception
(temperature
differences)

⇒
peltier hot and cold elements, electri-
cal heating by current through resistor,
infrared heat lamps

Nociception
(pain)

⇒ Electrical shocks/stimulation

Sense of time ⇒ -

Figure 2.11: Human senses relevant to VR, with important technologies to
stimulate them.

More senses exist, e.g. internal senses related to digestion. There are
no devices that can perfectly stimulate even just a single human sense.
Even though relevant, the details of the senses and how they work,
especially in combination with the brain, are out of scope.

Audition. Natural sound is a sum of monophonic sound sources.
However, distance and position of the sound source are important
information for humans. The external ear and upper body act as
a frequency filter. Also, the different positions of the ears lead in
general to a time difference of the sound reaching each ear. Both
effects are described by the Head Related Transfer Function (HRTF).
Convolving a virtual sound signal with the appropriate HRTF, the
sound can be rendered and output with headphones for a 3D sound
sensation. Using head tracking in a VE, the relative angle and distance
of the sound source can be computed. However, sound transmitted
through the body can not be simulated by that technique. Another
approach is wave field synthesis, using a few dozen loudspeakers
in an array. For a small target volume, the sound is approximately
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reconstructed. The major downside is a rather large and expensive
hardware effort.

Figure 2.12: Olfactory device with
nose tracking. Photo courtesy of
[YKNT03].

Olfaction. In general it is not possible to generate any odor by a
combination of a few basic components. Usually, all odors to be
displayed are produced individually and put in a different container.
An overview, also discussing recording and transmission of smells,
is given in [DHL01].
It takes a long time to replace one smell by another for a whole room.
A solution for an olfactory display that is not attached to the user and
allows some motion is shown in the image on the side. The smell is
launched in the direction of the nose [YKNT03], [NNHY06].

Perceptual Illusions. The human senses are not perfect measure-
ment instruments. Studies show a perception mismatch in VEs, e.g.
objects appear larger or walked distances shorter than they should.
Stimulating the senses in a clever way, a number of different side
effects can be exploited to trick the perception. Senses can be ma-
nipulated in an unconscious way, as in walk redirection [RKW01] or
exaggeration of head rotation [LFKZ01]. In some cases, such tech-
niques allow to bypass or reduce hardware limitations.

2.1.3 Input Devices

The computer is supposed to react on input by users or other changes
of the environment and thus needs to read sensor measurements of
physical values. Sensors can be very simple, like a joystick button, or
consist of a complex system like the Global Positioning System (GPS).
Below is an attempt to list themost important sensors and components
for common measurement tasks that may arise in virtual environ-
ments and mixed reality setups.

Head and object tracking
– IR / visible light
– Markers / natural features
– Inside out / outside in
– Electro-magnetic
– Electro-mechanic
– Inertial
– Gyroscopes
– Compass
– Single system / hybrid
– Depth sensing (time of flight/kinect) 

Electro-mechanic
– Digital / analog
– Pressure sensors
– Magnetic sensors
– Haptic devices
– Microphones (single/array)
– Brain Computer Interface

Optical cameras
– brightness
– line scan camera
– 2D camera
– tof depth camera
– lidar
– heat camera
– mouse
– 3D tracking
– multi touch Touch interfaces

– bare sensor / with screen
– single touch / multi touch

Wireless portable computers
– Mobile phone (SMS, Bluetooth)
– Tablet (WLAN, Bluetooth)

Figure 2.13: A selection of relevant technologies for input devices in Virtual Environments.
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Of special interest are input devices for game consoles, as they are
usually well tested, have a robust hardware, are available for a long
time and are cheap. While they usually are not meant to be used
in another context, game console controllers like the Nintendo Wi-
imote or the Microsoft Kinect are good examples for a large interest
by the community that provides open source interface libraries and
documentation by reverse engineering.

Figure 2.14: A selection of commercially available input devices. Depending on the setup, different devices
make sense. Top row (left to right): wireless gamepad, joystick, wiimote. Center row: keyboard, mouse, kinect.
Bottom row: webcam, spacemouse, PDA, headset, gyration mouse.

The gyration mouse and wiimote feature digital buttons and a 3D
acceleromter, later enhanced by gyroscopes. Thewiimote additionally
contains an IR camera with onboard detection of up to four light
source positions. The kinect has a color camera plus an IR camera
and IR dot pattern projector for depth sensing. The spacemouse by
3Dconnexion enables a 6 degrees of freedom (DoF) input by rotating
and translating the knob. To be able to use some of the devices for VR
instead of for their intended purpose, the interface must be reverse
engineered.

2.1.3.1 Single and Multi Touch

A variety of single and multi touch technologies exists. The ones
that can be combined with a display are of primary interest for us.
Referring to touch technologies, in this document we always imply
the combination with displays, unless otherwise stated.
Around , multi touch displays became popular again [SKO09].
New kinds of multi touch technologies are active topics in research
and industry. The following table shows promising technologies at
the time of writing, organized by the screen size.
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Important
Technology

Typical
Screen
Size

State of Development

Capacitive sensor ar-
ray.

≤ 32" (see
text)

Works well and is commer-
cially successful, e.g. Apple
IPod.

LCD with each pixel
also having an IR
light sensor. (Pix-
elSense)

5" - 40"
Samsung manufactures for
Microsoft Surface 2, still ex-
pensive.

Line scan cameras at
the edges of the dis-
play.

> 10"
Commercially available.
Many fingers close together
cannot each be detected.

LLP in combination
with rear projection. > 10"

Commercially available but
no optimal technology in-
vented yet.

FTIR in combination
with rear projection. > 10"

Commercially available but
no optimal technology in-
vented yet.

DI in combination
with rear projection. > 10" Commercially available but

lighting restrictions exist.

Figure 2.15: Promising touch and multi touch technologies at the time of
writing. This table may be outdated soon as the development of new tech-
nologies is an active topic in research and industry.

Projective capacitance technology can be used on much larger screens
than stated above. However, a visible coarse grid of horizontal and
vertical wires run over the screen. A controller measures the change
of capacitance in presence of e.g. a finger touch. To reduce moiré
artifacts when placed in front of LCD screens, the wires can be layed
out in a zigzag pattern. Only single or dual touch is possible with
the current hardware and drivers, while controllers supporting six
touches are worked on. Our tested product from Visual Planet also
showed a noisy signal leading to errors. However, for public displays
like in a shop window, this technology seems well suited. Also, the
true multi touch capacitive technology with invisible sensor grids
improves, announced is an increased screen size of 46" in late .
The frustrated total internal reflection (FTIR) technology was first
used for multi touch by Han et al. in  [Han05]. A promising new
technology is an LCD with a build in IR sensor for each pixel. Sharp,
around  (LCDs with Embedded Optical Sensors) and Samsung
in  (PixelSense, for MS Surface 2) presented such displays.
A choice of technologies is described in more detail in section 2.3.2.
The illustrations on the next page show the basic principles of different
kinds of optical touch technologies.
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projector

infrared
camera

mirror foil
on edge

thin trans-
parent cloth

acrylic glass

silicone layer

Frustrated Total Internal
Reflection (FTIR)

projector

infrared
camera

Rear Diffused Illumination
(Rear DI) infrared

illumination projector

infrared
camera

Front Diffused Illumination
(Front DI)

infrared
illumination

projector

infrared
camera

Laser Light Plane
(LLP)

infrared laser diode
modules with line
generator optics projector

infrared line
scan cameras

infrared LEDs

Line scan cameras

rear project-
ion material

infrared LEDs

LCD with one light
sensor per pixel

camera data

computed shaded areas

camera image

camera image

sensor image

camera imagecamera image

Figure 2.16: A variety of optical multi touch technologies, especially useful for large screens where capacitive
technology is not available.
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Technology Environment
Light

Force Trigger Errors Scalabili-
ty

Passive
Fidu-
cials

Other Notes

Rear DI needs controlled
lighting

zero clothes or other
bright large objects
near screen falsely
trigger

good yes hard to
find suit-
able screen
material

Front DI needs controlled
lighting

zero occlusion leads to
fewer recognized
fingers

good yes hard to
find suit-
able screen
material

LLP robust zero triggers already 1–
3 mm above screen
surface

good no -

Line scan
cameras

very robust zero several objects
close to each other
are detected as a
single one

good no -

FTIR ir blocking filter
can be used to
work better with
ambient light

force
sen-
si-
tive

needs enough
force to trigger

average no hard tomanu-
facture large
silicone layer

LCD with
light sensor
per pixel

probably ok except
for direct sun light

zero unknown poor, di-
rectly de-
pends on
LCD size

yes -

Figure 2.17: None of the optical touch technologies for large screens is perfect. This is an overview of their
capabilities and properties.

Note that often setups may detect fiducial markers for tangible objects
even if this is not directly supported, see section 3.2.4.

Back-of-Device Interaction Hardware A very interesting concept
for very small touch screen devices is the back-of-device interac-
tion [BC09], where the finger touches are sensed on the rear side
of the device. This was invented to overcome the so called fat finger
problem: A finger can easily covers the item of interest or even the
whole screen, a precise click is not possible. With back-of-device
interaction, the touch position is displayed on the display, e.g. the out-
line of the touching finger may be rendered as a virtual see through
feedback.

2.2 VIRTUAL ENVIRONMENT SETUPS

This section describes arrangements of displays and projection screens
in combinationwith additional technologies in order to realize a setup
for a specific purpose. We tested a few promising setups, that were
both interesting in terms of their capabilities as well as feasible in
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terms of cost and effort, but first we list a few existing setups at other
institutions.

2.2.1 Related VR Setups

Current common VE setups in research and industry are still CAVEs
and PowerWalls. The C6 at the Iowa State University is a high resolu-
tion six sided CAVE (see also [Fri99]). Per side, four 4k projectors are
used for active stereo. Compared to a wall of our DAVE, it has 11× as
many pixels and is 2.4× as bright.
Large high resolution walls use tiled displays. An example with
stereoscopic rear projection is theHEyeWall at Fraunhofer IGD, Darm-
stadt, featuring a resolution of 8k×4k pixels. In case of LCD screen
arrays, flat and curved arrays exist, like the HIPerSpace [DLR∗09] wall
display at CalIT2, a PowerWall providing 287 Megapixels. Besides
the visible bezels, the LCD screens have the advantages of compact
and cheap high resolution and high contrast displays with low main-
tenance costs. Vehicle simulators and dome theaters usually have a
monoscopic projection on a curved surface. Most full dome projection
systems are still monoscopic. However, many new installations are
likely to support stereoscopic images. The CyberDome [NVH∗04] is
an immersive dome setup. Today, laser projections are available that
provide a high contrast and sharp images of 4k×4k pixels, claiming
that 8k× 8k pixels are also possible. However, the currently used
LCOS (Liquid Crystal on Silicon) modulators still have problems with
synchronization for time interlaced stereo.

Figure 2.18: The Toshiba bubble
helmet, one of many curiosities of
VR hardware.

More exotic setups are e.g. cylindrical or spherical screens or vari-
ations of with partially planar screens. Examples are the Star-
CAVE [DDS∗09] with five side walls, or the AlloSphere [HKMA07],
a large 360 degree projection on an almost spherical surface with
the spectators standing on a bridge in the center. The Elbe Dom is a
large almost cylindrical screen with a diameter of 16m and a height
of 6.5m, where the users also stand on a raised platform. The Varrier
wall [SMD∗01] is a high resolution curved array of autostereoscopic
LCDs. A fixed parallax barrier is installed in front of each display.
The respective content is shown on the displays using head tracking
to provide the correct stereoscopic view.
Cheap 3D consumer LCDs and projectors exist that work with time
interlaced stereo and shutter glasses. They are described with 3D
ready and work with NVIDIA 3D Vision frame sequential signals.
Few LCDs exist with polarization, where alternating columns have an
accordingly oriented polarization filter. Also some autostereoscopic
TV sets are on the market. Desktop setups with a stereo monitor and
with or without head tracking are also referred to as fish tank VR.

2.2.2 DAVE Hardware Setup

As discussed earlier, the CAVE technology provides the most immer-
sive VR experience. A first CAVE in Braunschweig was developed
in order to make that technology more affordable and thus more
available by greatly reducing its cost. It is called DAVE, for Defini-
tively Affordable Virtual Environment. Building on our knowledge
from the first DAVE in Braunschweig, a second improved DAVE was
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constructed in Graz, also targeting continued research, education and
eventually commercial applications.
The key hardware components of the current DAVE are eight render
PCs and a master PC, whose graphics cards can be easily exchanged
every few years, time interlaced stereo projectors that were modified
to run in synchronization, a self made tracking system consisting of
four infrared cameras connected to a PC and the screens held by a
wooden frame.

Figure 2.19: Second DAVE setup: a four-sided CAVE.

Figure 2.20: A user in the DAVE.

Topology and Geometric Setup. We considered a few geometrical
possibilities for the DAVE in Graz. A setup with both floor and ceiling
projections requires a rear projections and thus a raised transparent
floor. We decided against such a setup out of room and cost restric-
tions. Also, without a ceiling projection it is easy to mount cameras
for the tracking system. We eventually decided to once again use
three rear projection side walls plus a floor projection from above.
A disadvantage is the restricted field of view, especially for content
displayed above the user and for tall people standing upright.

Figure 2.21: The DAVE seen from
behind the screen. The light beams
were added for illustration pur-
poses.

To maximize the DAVE size and still be able to use a part of the
remaining room for a different setup, we use a different location of
the projectors compared to the original CAVE and the first DAVE in
Braunschweig, placing them just above the top center of the screens
pointing outwards. They reflect their image on large coated mirrors
back to the screen. Advantages are that the projectors are positioned
rather close together, allowing short cables. They are attached to
the wooden frame of the DAVE. Being up high, they are out of the
way, do not receive a lot of dust and are not so much in risk of being
touched while cleaning or during maintenance of the DAVE room.
Unfortunately, our projectors needed a lot of maintenance in the first
years and demounting the projectors takes some time. With a new
version being available, we upgraded the projector hardware which
made problems less severe. The mirror for the floor projection is
placed above the front screen, so that the users’ shadows are cast to
the rear side where they are least noticed.
The DAVE is rotated by 45 degrees with respect to the room walls in
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order to minimize the used space. Another design choice was to build
a visually pleasing surrounding entrance, completely hiding the tech-
nology and computers. While this is great for demonstrations, some
parts of development and debugging are unnecessarily complicated.

Figure 2.22: First version of our
stereo projector hardware, still
with two projectors in separate
housings.

Projector Issues. The projectors buffer images from unsynchro-
nized video streams, thus not requiring expensive genlock graphics
cards. The projectors are modified by digitalImage to synchronize to
a chosen master projector by slowing down the system clock of the
slaves. The parameters have to be calibrated by the manufacturer
and locking to the correct signal usually takes around four minutes.
This modification is also the reason why the communication to the
projectors via the serial port is often corrupted.
A previous attempt to access the projectors via their LAN connections
failed, as only some of the projectors reacted. Hardware and software
was changed to use the serial port instead.
Another issue with the projectors is that they may loose some set-
tings after a power cut, sometimes requiring the access of the system
menu. This is only possible by pointing the remote control through
the ventilation slots at the correct angle, only hitting one of the two
projector units, typing a key combination as password with a fast
timeout, while standing on a ladder. After a power cut, two hours
must be scheduled for resetting the projectors. For the reproduction
of colors, a lookup table is used. From time to time it may reset to
a wrong default and the correct one must be reloaded. Other issues
include lamps and contacts of connections. After a failed firmware
update, an EPROM had to be replaced. A few times we had to send in
a projector because of a broken transformer. Looking at the price for
a projector or even the price for insured shipping, these experiences
were rather cost intensive. Sincemid , another updated version is
available, developed in collaboration with the projector manufacturer.
We assume that most problems mentioned are solved in that product.

Figure 2.23: Debugging of stereo
projector hardware in the second
version. Only one lens and one
lamp per screen are needed, but the
housing still contains two projector
mainboards.

ScreenMaterial andFrame. Ourfirst solution for gapless projection
in the corners was a custom made welding of the material including
a loop held by an aluminum pipe which is pulled by rubber straps
(see figure below, left side). The front wall of our first screen was
1cm too wide, what we only noticed when everything was set up,
so the screen needed to be replaced. To ease the setup and realize a
more transportable version, digitalImage developed a new frame with
acrylic glass corner with a 45 degree phase (see figures below). Each
projection screen is independent from the other ones. The setup of
such a DAVE only takes one day.

projector
light

projector
light

projector
light

projector
light

acrylic glass

observer observer

wooden framewooden
frame

rubber strap

pipe

Figure 2.24: Old design on the left, with a single large frame. New de-
sign on the right, each side can easily be separated, e.g. for transport or
maintenance.
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Figure 2.25: Left: With the old frame design, exchanging the screen ma-
terial is a lot of effort. In this case, the front side was manufactured 1cm
too wide and the whole screen had to be exchanged. Right: New frame
design by digitalImage. Photo courtesy of Armin Zink.

Figure 2.26: An ipod touch is used
for system control, realized with a
web browser.

Screen Color and Material. The frontal floor projection screen is
reflective and should match the color of the rear projection screen of
the side walls to get a similar brightness and dark level. With our gray
rear projection material this was not respected at first. A photometric
calibration to a common range maymean to loose a lot of contrast and
dynamic range. To solve this problem, we tested a few materials and
replaced the floor material to match the rear projection screen as good
as possible. Following Majumder et al. [MS05a], smooth intensity
transitions allow to retain a higher brightness. However, the strongest
problem is that the projection surfaces are not Lambertian, i.e. the
intensity depends an the view angle to the surface. Even though the
rear projection screens have a low gain factor of 0.8, they suffer from
hotspot problems, especially for wide angle projection like with our
1:1 lens. To lessen this effect, large fresnel lenses could bemounted just
behind the screen. Finally, a dynamic software attenuation controlled
by head tracking could effectively hide the transitions. However, even
with our setup, many visitors do not or hardly perceive these edges
and must be stopped from walking into the screen.

Figure 2.27: An LED strip is used
to highlight the small step into the
DAVE to avoid injuries. The floor
projection is protected against dirt
and scratches by felt slippers.

As the screens for the side walls are tightened also on the bottom, the
floor of the DAVE is raised to about 10cm above ground. To make
the step clearly visible, we highlight it with stripes in the background
image and with an additional LED illumination. The lights are not
directly visible from the inside and do not disturb the users. We
ask users to wear felt slippers in order to keep the floor clean. This
is inconvenient, especially for elderly people who might need to sit
down to put on the shoes. A minor positive side effect is that visitors
may be more aware of the sensitive equipment and may behave in a
more cautious way.

Mirrors. One problem we encountered with the mirrors is their
nonplanarity. After loosening the tight mounting in their aluminum
frame, it got a lot better. Still, this is a concern because our current soft-
ware calibration can only correct linear distortions (see section 4.2.3.1).
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Figure 2.28: The linear calibration is not correct along the complete edge.
Here, the corners are aligned but towards the center of the edge, the ef-
fects of nonplanarity of our large mirrors become visible. In addition, the
screen is not exactly planar either.

Floor Projection Clipping. In the DAVE, none of the rear projected
images shine on the same surface. Only the floor projection is a front
projection andmay also shine on the side and front walls. The angle is
very steep and thus the light is considerably dimmer. Wemechanically
adjust the projector so that the image accurately aligns with the front
wall. We use hardware blend masks for both sides, cropping the
original image with a 4:3 aspect ratio to the square shaped floor.

Figure 2.29: A wooden frame is suspended from the ceiling in front of the
projector (left). Black cardboards can be adjusted to block unwanted light
(center). Here, only the projector for the floor is turned on, demonstrating
that no unwanted direct light reaches the front projection (right image,
left side) and some still shines on the side wall (right image, right side).

A further and sharper reduction of unwanted direct light may be
achieved with an additional software mask. It can easily be generated
with a slight modification of the tool that we use to compute an undis-
torted background image for the operating system (see section 4.2.3.1).
The image can be displayed on top of the image content, attenuating
unwanted light. This is already supported by our frameworks (see
section 4.2.3.4), but as this effect is rarely noticeable, we have not
implemented this yet.

Figure 2.30: Lightweight shutter
glasseswith retroreflectivemarkers
for head tracking.

Stereoscopic Shutter Glasses. When the DAVE was build, we used
relatively heavy and very expensive shutter glasses. Around 

much cheaper and lighter glasses were available. We developed an
exchangeable mounting of the reflective markers, so that glasses can
be cleaned or swapped easily.
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Cheap Home Theater 3D Projectors. An interesting recent change
is caused by the home cinemamarket, the now rapidly growing stereo
sector. In around , the price for time interlaced 3D TV sets and
projectors dropped dramatically, because consumer devices were
introduced, thanks to another recent 3Dmovie hype. While resolution
and brightness do not match high end professional projectors yet,
they are orders of magnitudes cheaper and lead to a vaster availability
of stereo hardware in public. As they synchronize on the video signal,
multi projector setups require genlock graphics hardware or a multi
headed graphics card with several outputs.
For a setup like the DAVE in Graz, prices are compared between the
existing setup and a fictional one using the new home theater projec-
tors, with prices from 2011. For enhanced resolution, we consider a
setup with two tiled projections per wall for the fictional setup.

Professional Home Theater

Number of projectors one per side two per side

Total number of pixels 5.5M 7.5M

Total brightness 7,500 AL 24,000 AL

Total price for projectors 75,000 EUR 8,000 EUR

Total price for graphics cards 2,000 EUR 8,000 EUR

Figure 2.31: Price calculation comparing a DAVE setup with professional
3D projectors and with home theater projectors.

It is clearly visible, that for a much brighter system and slightly higher
resolution, the price is much lower. Including also the price of updat-
ing graphics cards three times over the following years, the costs are
still halved.

Comparison to an HMD. We once had the occasion to borrow an
HMD for a week. We directly compared it to our DAVE for an in-
door architecture application. Especially, visual immersion and size
perception were of interest. The HMD was an eMagin Z800 3DVisor
with 800x600 pixels per eye, a horizontal field of view of about 33
degrees and a weight of 227g. In the short time we did not manage to
get the included inertial tracker to work but used the DAVE tracking
instead. While the stereoscopic effect was visible, the impression was
far inferior to the DAVE. The exact reasons for this are not known.
Speculations by HMD experts are a combination of imperfect optics,
a small field of view, a larger influence of tracking latency and the
vergence-accommodation conflict.

Brain Computer Interface. In collaboration with the Laboratory of
Brain-Computer Interfaces at the Institute for Knowledge Discovery,
TU Graz, we connected a brain computer interface (BCI) to the DAVE.
For psychological experiments, BCI signals were evaluated and sim-
ple commands send to the DAVE server via a network connection,
allowing limited navigation trough a scene (see section 5.1.1.5 and
section 6.3.10.1).
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Figure 2.32: The brain computer interface (BCI) and a test subject in the
DAVE. Electrodes are placed on the head to measure electroencephalo-
gram (EEG) signals. Recognizing previously learned patterns, the subject
is able to navigate through a 3D scene in a very limited way.

2.2.3 HEyeWall Hardware Setup

As of today, projector arrays are the best way to realize a scalable seam-
less display. Large high resolution displays are possible. Common
drawbacks include the colorimetric and photometric differences of
the individual projectors, caused by lamp manufacturing tolerances,
lamp wear and LCD color changes with LCD projectors. This results
in tiling artifacts so that the transitions from one projector to the next
become visible, especially for low frequency content like a single
color background. While this can be partially corrected by a software
calibration, the brightness also depends on the viewing angle in case
of a rear projection setup. This is worse for wide angle lenses and
projectors without lens shift that cannot be put closely together. The
HEyeWall in Darmstadt is an example for such a display, one of the
leading large screen installations, a 5m×2.5m stereo screen using 24
projectors. To address the problem, we build the HEyeWall Graz,
a smaller scale experimental setup as a possible successor. It has 3
by 2 projectors on a 4m× 2m screen, plus an additional bright low
resolution projector that covers the whole screen. The figure below
shows an illustration of the setup.
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Figure 2.33: The HEyeWall setup in Graz, from the top (left) and from the
front without the screen (right). A large projector (green) with 1024×768
pixels and 15,000 AL projects on the whole screen. 3×2 tiled projectors
(red) with 1400×1050 pixels and 3,500 AL each are set up in an array.

The idea is that the large projector handles the low frequencies, with
the small tiled projectors filling in the high frequency details (see
section 4.3 for more information). The HEyeWall Graz is designed
for an interactive display of high resolution 3D content for multiple
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people. For input without the need for additional devices we chose
a multi touch interface solution. A rear projection setup fits well to
the needs of multi touch input, as users of a front projection would
occlude the content when standing in front of it or interacting with it.
Due to the short throw lens of the large projector, we use a very low
gain screen, like in the DAVE.

Figure 2.34: Most of the HEyeWall projectors: 6 small tiles and one large
projector covering the whole screen.

Figure 2.35: To attach the screen to the frame, wedrilled holes in the screen
and the frame. Here, preparations are shown for drilling the holes. It was
a challenge to be accurate enough.

Figure 2.36: The first applications tested on the HEyeWall.

Another early idea for the HEyeWall was to use HDR projection. We
experimented with an LCD as secondary light modulator. However,
the display has an anti glare surface that diffuses the light too much.
We also realized that it would not be feasible for us to achieve a
sufficient light intensity.
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Figure 2.37: An LCD was disassembled to be used as a component for an
HDR display. Here, white circles on a black background are displayed.

2.2.4 Polarized Stereo Rear-Projection Wall

Figure 2.38: A stereo rear-
projection setup with two pro-
jectors and linear polarization
filters attached to the lenses.

A cheap alternative to expensive 3D projectors used to be a setup
with two identical projectors but different polarization. Usually, these
projectors are vertically stacked due to the form factor of the projector
housings, trying to get the lenses together as close as possible. In
that case, lens shift capability may not be required, a feature often
only available on expensive projectors. Caution must be taken with
the ventilation, such that the heat dissipation is not blocked with
such stacked setup. Polarized filters are a cheap way to provide
stereo separation. A silver screen is necessary when used with front
projection to retain the polarization. Similarly, not all rear projection
screens retain polarization and a suitable material must be used.
In a minimalistic setup we use two small projectors with washers
glued on the bottom projector to hold the feet of the top projector.
Polarized filters from photographic equipment are superglued to the
lens. The setup is very portable. The images are quick to align, with
basically one degree of freedom depending on the screen distance.
We also have a very similar static rear projection setup with larger
projectors (see image on the side), where we added a head tracking
system as in the DAVE. However, we use the wall for larger groups of
visitors and thus, almost never activate the head tracking.
In both setups we do not achieve an exact alignment of the images.
When wearing the polarized glasses, the eyes can easily compensate
for the small misalignment. However, when working with mono-
scopic applications and not wearing the glasses, the image looks
blurred.
For linear polarization, ghosting appears if the head is tilted. To
avoid this, circular polarization can be used. A projector with time
interlaced projection does not have this problem and also does not
require a special silver screen.
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2.2.5 Future Setups

Two setups are presented that were designed for particular requests
and will hopefully be realized in the near future.

2.2.5.1 Mini Dome Concept

Price drops for ultra short throw projectors make new setups feasible.
One special problem from the industry comes from film production
studios for full dome (hemispherical) projections. During production,
a preview on a hemispherical projection is very important to test the
impression. However, the studios are not always located close to a
respective dome installation, the venue is expensive and coding the
video to the required format takes a long time.
We designed a small cost effective projection setup covering a hemi-
spherical viewing angle, that can be installed in an office and allows a
quick preview. The idea is to use a front projection in an upper corner
of a room, as illustrated below.

Figure 2.39: The Mini Dome setup, our novel concept suited for testing
hemispherical film productions.

With only three off-the-shelf off-axis ultra short throw projectors it
is possible to get a hemispherical projection that is not shadowed by
the viewers or other projectors. Also, using flat surfaces, the image is
perfectly sharp without expensive optics. By using front projection,
very little space is necessary for the setup. The same software as in
the DAVE can be used both for calibration and display. For testing
stereoscopic movies, anaglyphic stereo is probably good enough for
testing the 3D effect. Note that for stereoscopic rendering, the footage
can not be the same as for the theater, as the screen distance is different
and consequently, the eye separation must be different.

2.2.5.2 Car Simulator Concept

We design the display setup for a car simulator of the Institute of
Automotive Engineering. If the funding works out, the final system
will be mounted on a hexapod motion platform to partially simulate
acceleration forces. Unconventional requirements are a stereoscopic
setup as well as gaze tracking. Also, a very large room may not be
available. As driver reactions at high driving speeds will be evalu-
ated, distant objects are of interest and thus, the resolution must be
reasonably high.
To estimate the necessary field of view and the number of displays for
different configurations, we use a 3D modeling application and place
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a cylindrical screen around a car model, centered on the driver’s head
position. By placing light sources at a few common head positions, the
field of view can be observed on the shadowmap of the cylinder. The
most promising configuration seems to be a tiled display with 8×3
LCD screens and parallax barrier in combination with head tracking,
a Varrier display [SMD∗01], [PKG∗07]. A drawback are the visible
bezels, even when using monitors that are designed for tiled displays.
By using the parallax barrier, no genlock hardware is necessary, an
important cost factor for this setup.

Figure 2.40: Visible field of view from a driver in a car, projected on a
cylinder and unwrapped for this illustration. White, red and blue repre-
sent slightly different head positions. With this display setup with 8× 3
autostereoscopic monitors (yellow), most of the important field of view is
covered.

2.3 CUSTOMDEVICES
To explore new ways of interaction and to better meet the require-
ments in a VE, we also build custom devices. In some cases com-
mercial solutions are available, but too expensive. Our goal is to use
affordable hardware if possible and also demonstrate interaction with
a prototype.

2.3.1 Optical 3D Tracking System

For many VR displays, the user’s eye positions must be measured to
provide motion parallax and an undistorted view. It is common to
actually only measure the head position and orientation and derive
estimated eye positions.

6 DoF Tracking Technologies Electromagnetic 6 DoF tracking sys-
tems are available for a long time and today also wireless systems
exist. They are portable and easy to set up and do not require a line
of sight to the sensor. A major problem are metallic objects or other
magnetic fields near the tracking device, leading to distortions. For
acoustic tracking systems, the number of emitters does not easily scale
while maintaining a high update rate. Mechanic tracking devices re-
strict the motion of the user. Currently, optical tracking systems are
the best choice for tracking in a CAVE. They commonly use multiple
cameras to triangulate markers. A good system with six cameras
costs around 5,000 EUR (mid ), see section 3.1.1 for more details.
Important applications for the high end systems are motion capturing
and virtual camera systems for movie production.
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In  as the DAVE in Graz was built, the cost was about 50,000 EUR
for a commercial tracking system. As there was no affordable optical
tracking system available, we decided to build our own system, with
hardware cost of around 5,000 EUR. For a single system, the necessary
software development is a large effort, but for multiple systems it
pays off. An idea was to release the system as open source to enable
research and profit from developments of other groups. The software
will be described in section 3.1. Compared to the electromagnetic
tracking system of the DAVE in Braunschweig, we achieve a notably
higher update rate and lower latency, a higher accuracy, and only
need lightweight wireless markers for tracking.

2.3.1.1 Illumination Setup

By far the easiest way to detect markers is to setup illumination so
that on a black background, the markers appear as bright spots (or
vice versa). There are many ways to differentiate markers, e.g. pat-
terns, natural features, different colors or time coded active markers.
Limitations of these approaches are the maximum number of dif-
ferent markers, physical size or image resolution, limited viewing
angles or frame rate limitations. Using active markers, i.e. IR LEDs
require little power and only a short exposure time is necessary for
the cameras. However, markers that should be visible from all sides
require multiple LEDs. Moreover, cabling and batteries are necessary
and make the tracked object heavier and less convenient to use. Thus,
we choose to use a common and simple but effective passive marker
setup.

Passive Markers. For markers, wooden or cotton balls, taped with
retro reflective material are used. They are attached to the tracked ob-
ject with lightweight and robust carbon sticks. To differentiate tracked
devices, we use so called targets, a fixed constellation of three or more
markers (see Figure 2.8). Besides identification we also compute the
orientation, giving all six degrees of freedom. In the DAVE, wemostly
use one target attached to the glasses and another one attached to a
handheld input device, e.g. a joystick. In the past years, our joystick
was dropped about a dozen of times, mostly by visitors. Sometimes,
the carbon sticks break but can be replaced easily. The target then
needs to be recalibrated.

Infrared Illumination. To make the markers visible, infrared (IR)
LEDs (see section 2.3.3 for details) are placed closely around each
camera lens, so that their light is reflected well into the lens by the
retro reflective material.

Figure 2.41: Infrared illumination with SMD LEDs. In addition to the
housing on the right, an IR filter is attached in front of the lens to filter
out visible light.
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Retroreflective Material. To test the importance of the LEDs be-
ing close to the camera lens, we measured the reflectivity of our
3MTMScotchliteTMtape. For practical reasons we used a torch with
visible light, pointed the focused light to the tape and took a photo
of the reflected light. The results in the figure below show that it is
indeed very important to place the LEDs as close around the lens
as possible. As an example, for a marker distance of 2m, the high
reflectivity within 0.3 degrees is equivalent to a radius of 1cm. The
retro reflective tape surface contains glass beads made out of dense
glass that focus light on the surface just behind, so that the light is
reflected back almost to its origin. Since we use light with a higher
wavelength, we expect a slight defocus due to a lower refractive index,
slightly flattening and broadening the curve shown.
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Figure 2.42: To get an idea on the angle dependent reflectivity, a photo of
a light beam reflection from the retro reflective material was taken. The
scan line shows the small reflection angle. On the left, the shadow of the
light source hides the brightness. Note that the camera response curve is
not calibrated.

The results above confirm the assumption, that the outer ring of
LEDs helps considerably less than the inner ring for close markers.
However, the far markers appear less bright and are the ones that
need additional light, so that arrangement has the positive effect to
help getting a more equal brightness for close and distant markers.
Since we use distances of up to 4m in the DAVE, it would still help to
move both rings closer to the lens.

2.3.1.2 Outside-In vs. Inside-Out Tracking

Most VR setups use outside-in tracking. This means that cameras out-
side the tracking volume track an object inside the volume. Another
approach is to use a camera on the tracked object that recognizes
markers attached outside the tracking volume. With that camera
image, the camera position can be computed. This approach is better
suited for accurate orientation but less accurate translation values. It
is often used for Augmented Reality. A notable exception is the HiBall
tracking system [WBV∗99]. It is precise and fast and it detects a coded
light by IR LEDs integrated in the ceiling. Using more of these LEDs,
the system can be easily scaled to large rooms. In combination with
an HMD, this enables natural walking in a large area.

32 2. HARDWARE DEVICES



2.3.1.3 Sensor Fusion

No tracking system is perfect. A clever combination of multiple tech-
nologies can lead to much better results, especially when sensors
are likely to fail temporarily. This approach is often used in robotic
navigation or AR. For VR, a good combination to improve the optical
tracking in the DAVE might be accelerometers and gyroscopes. A
higher update rate and reduced lag are possible, as the acceleration
sensors and gyroscopes always provide data and can easily send data
with over 60 Hz and a low latency. Integration errors over time can
be compensated whenever the optical tracking detects the respective
target.

2.3.2 Single and Multi Touch Setups

On small devices, capacitive touch technology works very well, but
for large screens there is no perfect touch screen technology available.
A few promising technologies were tested in order to explore and
improve their capabilities.

2.3.2.1 Diffused Illumination setups

For Aichi, the world exhibition Expo 2005 in Japan, a five screen setup
with diffused rear illumination and rear projection was built. Behind
each screen is a projector, an infrared light source and an infrared
camera. Ambient light is a big problem with such a setup. It is not
easy to find a usable screen material and even with fully controlled
lighting it is not easy to reliably track hands. With simple threshold-
ing, bright cloths of the user also incorrectly trigger a detection. In
combination with a local contrast filter, whole hands can be tracked
reliable, whereas single fingers from the same hand cannot be dis-
tinguished on that setup. An issue that was not thought of in the
planing phase is the hygienic concerns in the Japanese society. As an
alternative to using the bare hand, paper hands on sticks were offered
at the venue. See section 6.2.1.1 for a description of the software part.

2.3.2.2 NextWindow Frame

In collaboration with NextWindow we modified their single touch
frame to get a larger scale version. The frame consists of stripes with
infrared LEDs at 3 sides and two line scan cameras in the corners. A
big advantage over all other optical touch technologies is the inde-
pendence to ambient light. Even direct sunlight on the screen seems
not to be a problem. No touch force is required for a detection. A
disadvantage is that sleeves or almost touching parts of the hand also
trigger a detection.
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Figure 2.43: The NextWindow setup (in 2005) that we scaled and fitted to a
larger rear projection screen. Two line scan cameras see a finger’s shadow
and can triangulate it reliably.

Figure 2.44: Transportability of VR
and multi touch setups is an im-
portant issue in practice, as they
are well suited for exhibitions and
presentations. This image shows
the rather difficult transport of the
multi touch table constructed by
the Fraunhofer IGD.

In the design above, multiple touches cannot be localized as ambigui-
ties cannot be resolved. The dreaMTouch by Citronmostly handles this
by employing many more (we estimate a dozen) line scan cameras.
When fingers get close to each other, the system fails to distinguish
individual fingers and only detects one large contact. Together with
the furniture company bene Büromöbel it was integrated in an existing
table with an additional screen in a side wall (see Figure 6.10 on the
right).

2.3.2.3 HEyeWall Multi Touch Tracking
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projectors

mirror foil
on edge

thin trans-
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material
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Figure 2.45: Multi touch setup for theHEyeWall with the FTIR technology.
The silicone layer as compliant surface on the acrylic glass is necessary to
make the touches more visible. A thin cloth is used to prevent the rear
projection material from sticking to the silicone layer.

34 2. HARDWARE DEVICES



In the diffused illumination setup described above, there are difficul-
ties getting reliable touch information for single fingers. Thus, the
promising FTIR (frustrated total internal reflection) technology (see
Figure 2.16) was tested. With positive experience on a first small test
screen, it was scaled up for the HEyeWall.

Figure 2.46: Frustrated Total Internal Reflection (FTIR). Light enters the
acrylic glass from the side. Here, a small fraction is diffused on the surface
and visible in the top right of the photos. The major amount is refracted
and reflected internally. When a finger is close to the glass, it is not lit
(left image), but when it touches, the refraction index changes and the
light diffusely reflects from the finger (right image).

Figure 2.47: An FTIR test setup for the HEyeWall multi touch input. An
infrared camera is placed next to the projector to capture the screen. With
infrared illumination from the side, the screen lights up when touched.

Scaling the Technology to the LargeHEyeWall. We tried to extrap-
olate the amount of necessary light for the large screen. As it turns
out, we had largely underestimated the number of necessary LEDs.
By using more LEDs, polishing the edges and fitting themwith reflec-
tive mirror foil everywhere except for the LED positions, we managed
to increase the amount of light by a factor of about six.
Another problem is the silicone coating. While the coating of the
small test screen worked well, the high viscosity and quick drying of
the silicone lead to serious problems. Our first attempt failed and the
next one still lead to surface defects in form of enclosed air bubbles
and an uneven surface.
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Figure 2.48: Silicone coating the large screen did not work well. The left
two images show our first attempt that failed. Even using silicone thinner,
our second attempt was not perfect, resulting in air bubbles and some-
times unregular spots as seen in the close up on the right.

Also, a small fraction of the projector light is visible to the cameras.
The direct reflections on the acrylic glass lead to blind spots without
further precautions.

2.3.3 Illumination with Infrared LEDs.

For both tracking systems for the DAVE and the HEyeWall, infrared
LEDs are employed.
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Figure 2.49: Spectral curves: interfering light sources (reproduced from
[DQ],[Spea],[Speb]), projector (reproduced from [Sped]) and infrared
illumination (reproduced from [Spec]), IR pass filter (self measured),
used CMOS cameras (reproduced from [Gre],[Pro]) and a typical CCD
camera (reproduced from [Opt]) for reference, human eyes (reproduced
from [Dow87]).

Spectral Curves and Infrared
Light. In order to avoid blind-
ing of the users or contrast re-
duction, the tracking works with
wavelengths outside the visible
spectrum. As common camera
sensors are sensitive to the near
infrared spectrum andLEDswith
these wavelengths are particu-
larly cheap, this is by far the most
cost effective solution. Unfortu-
nately, other light sources may in-
terfere. If ambient light is a prob-
lem, one solution is to use laser
illumination and a matching nar-
row bandwidth filter that blocks
a large amount of the ambient
light. A second solution is to use
bright short flashes synchronized
with the exposure. However, the
pulsed light from DLP projectors
may lead to flickering. Of course,
both methods can be combined.
As we use a rather long exposure
of about 4ms in the DAVE, mo-
tion blur occurs at fast moving
markers. Also, the projector light
in the DAVE is slightly visible to
the camera. Both problems can
be minimized by increasing the
amount of IR illumination. Be-
sides adding more LEDs or using
powerful devices, pulsed LEDs
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synchronized to the camera exposure can drive higher currents for
a short time. As an example, in our configuration, LED pulses with
only 0.1ms allow a ten times higher maximum current. Motion blur
and influence by other light sources are reduced by the factor of 40,
but the light also gets about five times dimmer. Also, there is a risk
to influence the pulsed infrared signal used by the shutter glasses.
Finally, the driver circuit is more complex. For these reasons, we use
a constant illumination.
For the HEyeWall multi touch setup a constant illumination with
about 30ms exposure time is used. With multiple pulsed flashes
with a duration of 0.2ms each and ten times the current, and with a
synchronized multi exposure, the illumination intensity could stay
the same, but the influence of ambient light from room illumination,
daylight and projector light could be reduced by a considerable factor
of 150. This solution requires camera hardware supporting suchmulti
exposures and a much more complex LED driver. A small error may
quickly lead to thermal destruction of the LEDs.
An uneven illumination may lead to a dynamic range higher than
the camera can record with a single image. Multiple images with
different exposures could be recorded but this requires additional
overhead and processing time. Instead, the illumination should be
evenly distributed over the image.

Eye Safety. Using infrared illumination for tracking is an elegant
way. Addingmore LEDs for the DAVE is relatively simple. In contrast,
for the HEyeWall, much more work is required. However, especially
in the DAVE little ambient light is present and the pupils of the users
are big. As the LED light is barely visible to the human eye, its
protective reflex does not work. A high dosage over a long time may
lead to opacity of the lens over the years.
Little information is available to accurately compute safety limits. An
estimation shows that at normal distances, the radiation level is not
harmful. However, one should not look towards the LEDs from a close
distance. Also, other 3D optical tracking systems use IR illumination
with much higher intensities.
Of course, focussed IR lasers should be treated with special care. For
our multi touch systems this is an important point against IR laser
light plane setups.

2.3.4 Hand Held Interfaces

We developed several hand held interfaces, both for the immersive
DAVE and for non-immersive interaction such as at a desktop or in
an exhibition or museum. Available interfaces are not ideal and often
not well suited for VR. Experimenting with new interfaces requires
basic IO capabilities, presented below.

2.3.4.1 DAVE Interfaces

Several hardware interfaces were tested for navigation and interaction
in theDAVE. For localization and orientation, the devices use the same
3D tracking that is also used for head tracking functionality.
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Figure 2.50: Schematics and layout of an electronic interface to connect
different input devices for theDAVE inBraunschweig. TheAtmelMega16
microcontroller is programmed to communicatewith a PC, offering digital
and analogue inputs and outpus.

Figure 2.51: A user with the wa-
ter pistol IO device in the DAVE in
Braunschweig.

For the the electromagnetic tracking of the DAVE in Braunschweig,
sensors are expensive and only one was available to us for custom
devices. To quickly be able to swap one custom device with another,
a general purpose input and output interface is used. The interface
cable and sensor can easily be detached from one device and attached
to the next one. 27 IO pins are available for free use, providing digital
inputs and outputs, amaximumof eight analog inputs and one analog
pwm (pulse width modulated) output. A couple of digital inputs are
used for automatic device identification, also allowing hot plugging.
In contrast, for devices using the optical tracking in Graz, each device
gets an own target attached and in theory, all devices can be used at
a time. In practice, the system only checks for one to two devices at
a time, as the performance of the tracking system drops with more
targets and most of the applications use the same input device.

Gamepad. In the DAVEs in Braunschweig and Graz, gamepads
are used, offering many inputs (16 digital buttons, 4 analog axes) in
a robust and ergonomic housing. Navigation with 6 independent
degrees of freedom is possible, still allowing to trigger additional
events with the remaining channels. However, most of the function-
ality is not used in our applications. The high number of controls
presents a challenge to novice users, as they can accidentally mix up
the buttons, or trigger a reaction by accident. For interaction with a
gamepad, usually both hands are required. In our experience, point-
ing with stretched arms while holding the gamepad feels awkward.
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Figure 2.52: Tracked gamepad and 3D glasses as input devices in the
DAVE in Graz.

Figure 2.53: A custom joystic, a ver-
satile input device used in most
DAVE applications.

Joystick. To free one hand and enable comfortable pointing, and
to avoid the complexity of a gamepad, a custom joystick was built.
Similar commercial alternatives are very expensive (e.g. the FlyStick2
by A.R.T. costs 3,100 EUR, mid ) and do not offer an analogue
trigger, like our device. This trigger state together with the 6 DoF
tracking information is usually sufficient for our applications. Four
additional digital inputs are placed on top of the device to offer further
input options when necessary. For the electronics, a cheap wireless
gamepad (Logitech Rumblepad 2, 22 EUR, mid ) was disassem-
bled and unnecessary parts of its board cut away to fit in a small box
under the grip. This box also contains the batteries, giving the device
a good balance. A physical arrow is glued to the front to indicate the
principal direction. This allows a quick explanation to novice users,
e.g. controlling movement by the arrow pointing direction. The main
drawback in daily use is that a custom device is hard to replace in
case it breaks.

Figure 2.54: The electronics of a gamepad (left) are cut and integrated into
a joystick grip (center), with a battery compartment on the bottom.
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2.3.4.2 Wireless sensors and buttons

For custom user interface prototypes, especially for the DAVE, wire-
less handheld devices are useful. While the first versions were still
using a microcontroller connected via the serial port, it also turned
out to be very cost effective to use the electronics of an existing joy-
stick, featuring a USB wireless communication that is very easy to
use via the available driver. Joysticks are often supported by software
already. On the other hand, a custom USB device is expensive and a
lot of effort is required to implement the firmware and the drivers on
both of our supported operating systems.
Another possibility is trying to use wireless presenter devices or
gyration mouses, that have accelerometers and now even gyroscopes
build in. Unfortunately, there is no software API available as they
are intended to just control a 2D mouse cursor. Maybe, the use of
such devices is possible by sniffing the USB data and reverse engineer
the communication protocol to access the raw data. Hackers have
achieved this for the Wiimote by Nintendo, as explained in the next
section.

2.3.5 Accelerometer

In a museum exhibition, small or unaccessible items may be hard to
see from all sides. One solution may be to show a 3D rendering of a
3D scan on a large screen next to the real physical item. To inspect
the item from all sides, visitors should be able to rotate them in an
intuitive way. One idea to solve this is a proxy object that may have
a similar shape as the item. By picking the proxy item up and by
rotating and moving it around, the 3D representation on the screen
can be controlled.
For the EPOCH [EPO] project we built such a prototype. A first
attempt was to use computer vision to detect features on an object
and derive its six degrees of freedom. At the time, algorithms for
efficient natural feature detection were still in development by experts
in the field. After a few months of work it showed that too much
time was still necessary to finish the implementation. However, most
of our goals could be achieved using a new three axis accelerometer
integrated in a single chip. To interface that chip with a PC, we use a
microcontroller. While joystick hardware usually supports a dozen of
binary buttons plus a few analog potentiometer levels, they may not
be useful to directly measure analog voltages, as often provided by
sensors. Using a microcontroller, the analog voltage can be converted
and sent to the PC via the serial port. For moderate motion, most of
the acceleration consists of gravity, thus the vector pointing down can
be measured and used to control tilt and rotation of a 3D artifact on
the computer screen. Later, this chip was also used in the Wiimote,
making it more available as it is integrated in a mass product for a low
price. The Wiimote is wireless but also larger than our small device.
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Figure 2.55: Acceleration sensor and micro controller board as PC inter-
face to control 3D object rotation on the screen. The microcontroller is
shown in the top right photo, the accelerometer is visible in the center of
the bottom right image. The serial communicationwith the PC needed de-
buggingwith an oscilloscope (bottom left). The complete device is shown
in the top left image.

2.3.6 Turn Table for Automated 3D Scanning

Scanning 3D objects like items in museum collections becomes more
and more important. However, such scanning often requires manual
work. Only with fully automated 3D scanning it is feasible to digitize
large collections of museum items. In an early work to address this
problem, we built a low cost silhouette carving based 3D scanner. The
hardware is a self made turn table which is motorized by a stepper
motor that is controlled by the PC. A backdrop, lighting and awebcam
connected to the PC complete the setup. Refer to section 3.3.3 formore
details.

2.3.7 Camera and Projector Mounting

Some mechanical details sound trivial from a research point of view,
but still need to be done. One example is mounting of projectors and
cameras. It is advisable to be able to control the degrees of freedom
independently. While for a camera the position is usually fixed, two
or three angles have to be adjusted. In addition, the lens controls
must be reachable to be able to adjust zoom, focus and aperture.

Camera Mounts. The camera mounts for our 3D optical tracking in
the DAVE are commercial mounts for loud speakers. They are very
unpractical: All rotational axes are fixed with a single screw while
one axis is a lot looser than the others, making small adjustments
very tedious and hard to control. To solve this, we designed a custom
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simplistic camera mounting. Independent tightening of each degree
of freedom is easy. However, since the Firefly MV cameras by Point
Grey did not come in a housing, precise work is necessary. As now a
camera housing is available that is equipped with a standard tripod
mount, very cheap and good mounts can be bought.

Figure 2.56: The camera mounts in the DAVE are hard to adjust (left). Cus-
tom camera mounts for the HEyeWall work much better (center). A cheap
and good option is shown on the right.

Figure 2.57: The custom stands allow an easy and precise adjustment of
the projectors with three screws for each platform.

Projector Stands. Apreciseme-
chanical alignment of projector
images to a screen is hard and of-
ten impractical. With additional
software calibration, only a rough
alignment is necessary, as long as
the image covers the whole part
of the screen. However, the bet-
ter the mechanical alignment, the
less light and resolution iswasted.
Rotation angles as well as trans-
lation should be independently
controllable. With the DAVE pro-
jector mounting, adjusting the
projectors is tedious.
We designed a better solution for
the small projectors of the HEye-

Wall. Each platform for a projector is held by three screws that can be
directly adjusted with a high precision. Projector weight and friction
are enough to keep the screws in place.
An idea for a helpful application for positioning a projector is a guid-
ance system. A calibrated camera may continuously analyze a pro-
jected pattern to be able to advise the operator in which direction the
projector should be moved.

2.3.8 Outlook: The Ideal Hardware

For all presented devices there is much room for improvements. For
a technology to stimulate all human senses and react to the user’s
intentions, science fiction stories have an answer for a long time: the
brain interface. A major advantage of this idea is, that if this one
technology really worked one day, all other hardware would become
obsolete.
Sutherland’s thoughts for the Ultimate Display [Sut65] were already
mentioned. Three years later, the science fiction author Bob Shaw
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described a different but compelling idea of a scenedow, a combination
of scene and window with slow glass in his novel ’The Light of Other
Days’ [Sha68]:

Light took a long time to pass through a sheet of slow
glass. [. . . ] One could stand the glass beside, say, a wood-
land lake until the scene emerged, perhaps a year later. If
the glass was then removed and installed in a dismal city
flat, the flat would - for that year - appear to overlook the
woodland lake.
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3
Input: Optical Tracking

Alot of input devices mostly consist of digital sensors and hard-
ware for data transmission. This raw data can often more
or less directly be used in the interaction logic. However,

optical input devices using cameras typically record sensor data that
cannot directly be used. Clever software is needed to interpret the
data in a number of ways. This is also the reason for their versatility.
A whole research area is dedicated to this task, the field of Computer
Vision. It is particularly hard for a computer to “see” and understand
its environment. Many tasks that are simple for a human are unsolved
problems in Computer Vision.
Systems for user and object tracking are an essential part of Virtual
Environments. Many of the applications can be realized using optical
tracking systems. Two types of optical tracking systems were built
from scratch in order to affordably realize and improve the systems
and experiment with new ideas: 3D tracking based on reflective mark-
ers and 2D multi touch systems for large rear projection screens. The
software part of these systems is the content of this chapter.
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3.1 3D MARKER TRACKING

At the start of the project, we had three major goals: We wanted to fill
the gap of not having a good tracking system for the DAVE, build a
cost effective system in line with the idea of an affordable DAVE and
intended to create a benefit for the community.

3.1.1 Optical 3D Marker Tracking - Related Work

Tracking systems based on other hardware technology are listed in
the previous chapter. Here, only work is presented that is closely
related to our approach.
State of the art commercial tracking systems provide very precise and
fast measurements. Vicon Motion Systems offers cameras with up
to 16 Megapixels and 120 Hz capturing and on board processing, or
lower resolution images with up to 2000 frames per second. Advanced
Realtime Tracking GmbH (A.R.T.), OptiTrack by NaturalPoint and the
iotracker offer systemswith less powerful hardware specifications. The
software tools for all of these systems are developed for a convenient
calibration and use. However, the high price is a problem for many
installations. In mid , the approximate costs for systems suited
for tracking in the DAVE are 50,000 EUR (Vicon), 20,000 EUR (A.R.T.),
10,000 EUR (iotracker) and 5,000 EUR (OptiTrack, only max. 58◦ hfov).
The OptiTrack bare camera boards without housing, lens or flash but
with imaging sensor and onboard 2D point processing are available
for only about 250 EUR, making this a very attractive choice for own
developments.
Organic Motion offers a markerless motion capture system. Using
convex hull carving, it can fit and show 3D skeleton data in real-
time. The Kinect sensor by Microsoft computes a depth image by
triangulation with a projected IR pattern. Time of flight cameras also
provide a depth image by measuring the time of travel of a very short
IR flash. These methods can also provide the user pose as skeleton
information. However, the head rotation cannot be obtained yet. This
is important for VR in order to estimate the eye positions especially
for the stereo effect.
A cheap active optical tracking with a single camera is TrackIR by Nat-
uralPoint, intended for desktop gaming. Fishtank VR and exaggerated
head rotation are used in games e.g. to look around in a cockpit. An
open source alternative using the same software interface is FreeTrack.
Hay et al. describe low cost tracking using Nintendo Wiimote cam-
eras [HNH08]. As the devices can send pixel positions of up to four
bright spots in the infrared camera image, four active markers can
be tracked with relatively little effort. A similar system with passive
markers is presented in [ASLP10]. A drawback is the relatively small
field of view (42◦ hfov, 32◦ vfov) of the camera, making it less useful
for the DAVE. A reported problem in practice is the Bluetooth pairing
that may not always work reliably.
The ARToolkit [KB99] is a 6 DoF marker tracking for a single camera.
A square containing an identifying pattern is used as marker. This
is also possible using natural features, as described by Wagner et al.
in [WRM∗08]. Such tracking is well suited for AR. For outside-in
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tracking in a CAVE, the required high camera resolution or large
marker size is not practical.
For marker identification, active markers can be switched on and off
with a time code pattern, similar to the technique employed by the
HiBall tracking system [WBV∗99]. For such a method, the LEDs need
a electronic controller and some sort of synchronization. Another
approach is to use different wavelengths, i.e. different colored LEDs
with an RGB camera. This may be a good option for a limited number
of markers when using visible light. However, the Bayer pattern
leads to a reduced resolution of each color channel compared to a
monochrome image with the same imaging sensor.
Research at the Vienna University of Technology with passive marker
tracking [DU02] led to the already mentioned iotracker system that
is now commercially available. Mehling et al. [MEK06] and Pintaric
et al. [PK07] describe the system. End of , when the DAVE was
built, we saw a working prototype. Unfortunately, the system was not
yet available. Results are superior compared to our system in terms
of accuracy and speed, also allowing more targets at a time.
Hervé et al. show with the Cyclope tracker [Mat05], that even with a
single camera, the 6 DoF of a target can be recovered, e.g. by using
the POSIT algorithm presented by DeMenthon et al. [DD95] which
computes a first solution without perspective as starting point for
a subsequent iterative refinement. The cyclope tracker was also de-
veloped into a commercial product which was released end of .
The application of this idea to our tracking system is possible with
the same hardware and will lead to a higher robustness against oc-
clusions.
Hogue et al. present a hybrid tracking system for a six sided CAVE
using an inertial sensor in combinationwith a set of laser rays pointing
in different directions to the display screens [HJA04]. Cameras outside
the CAVE track these points.

3.1.2 Tracking System Components

In order to fulfill the goals stated above, optical tracking is the best
option we found. We chose the method of tracking targets consisting
of spherical markers because it was already demonstrated that this is a
robust, accurate method and there are no obvious unsolved problems.
Our further design decisions were to use passive (reflecting) markers
instead of active ones, the choice of camera hardware considering
cost and benefit and also the decision to do all image processing on a
single PC rather than on dedicated DSP hardware. Finally, for easy
distribution and high performance, it should not depend on external
mathematical tools likeMatlab byMathWorks.
The software is split up into modules with defined input and output
data, as illustrated on the following page. These modules can easily
be exchanged for future improvements and tests or recording and
playback of data. A configuration file allows to choose and configure
the modules.

3.1. 3D MARKER TRACKING 47



hardware

DAVE server

software

Ray3DList

Marker-
3DList

Recognized-
TargetList

Network Server Thread

set region
of interest

Ray
Inter-

section

name, marker IDs

main thread

Convert
2D Points

to 3D Rays

sync

Marker-
2DList

x, y, id

start x, y, z
direction x, y, z

x, y, zCamera
ImageCamera

Input

3D
Marker

Tracking Target
Filter

Marker-
3DList

x, y, z Match
Target Recognized-

TargetList
name, x, y, z, rot

Target
Tracking

Target
6 DoF

Extraction
Marker-
2DList

x, y
752x480

2D
Marker

Detector

3D markers
and target
positions

cameras

reflective
markers

Image
Data

(Firewire)

Tracking,
Filter

and target
positions

request

Tracking server

infrared filter

camera infrared
LEDs

wide
angle
lens

one thread per camera
Calibration

Data

Figure 3.1: Marker based optical 3D tracking system overview.

48
3.

IN
PU

T:O
PTIC

A
L
TRA

C
K
IN

G



For performance testing, all modules can be run a thousand times in
a row each to be able to more accurately measure the run time. The
measurements are still not exact due to the influence of the cache, but
are helpful to judge runtime differences of different approaches or
implementations in relation to each other. Also, each module has a
simulation mode to send out fake, simulated data to test subsequent
modules. Some modules can be disabled, e.g. target detection. Most
modules can record or playback incoming or outgoing data, useful
for debugging or development.

3.1.2.1 Image Capture and Transfer

All cameras are triggered by software. When an image arrives, a time
stamp is added. This module directly communicates with the camera
API and is the only operating system dependent part of the whole
system.
For one type of cameras that we use, the EC750 by Prosilica cameras,
we can only use synchronization by software at the moment. For
hardware synchronization, the camera API does not fit well to our
multi threaded system model. It would be advisable to split up the
camera capture module into two parts, moving the synchronization
part to the main thread.
We also developed a module for the more affordable Firefly MV cam-
eras by Point Grey, when they became available.
To avoid memory allocation for each frame, a double buffer is used.
While one image is processed, the data transfer for the next image is
already started.

3.1.2.2 Marker Detection

Figure 3.2: Examplary close-ups of
markers in a camera image.

A simple approach in a computer vision pipeline is to first use a
brightness and contrast enhancement of the image, followed by a
thresholding pass and then a connected components labeling step.
As only small circular bright spots are searched, the above steps can
be reduced and simplified to a single pass in order to improve the
performance.
A pointer to the raw image data and the image dimensions are the
inputs of this module. An additionally specified region of interest
(ROI) may further reduce the image area where markers are searched.
The image is processed line by line in a single pass and only uses data
of the current and last row at a time, so that the data fits easily in a
fast processor cache.
In the camera image, light from the DAVE projectors is slightly visible.
A sparsely sampled 1D Laplace impulse response on the rows is
calculated and compared to a threshold. It is invariant to background
illumination with low spatial frequencies and is very fast to compute.
If the value is above a certain threshold, is is accepted as part of a
detected marker. In that case, the left and above pixels are checked in
order to use the same IDwhen themarkerwas already detected before.
The weight (instead of number of pixels) and weighted position is
summed up to a total for each ID.
After the whole region of interest is processed, all weighted positions
are divided by the accumulated weight to gain an average position
with sub pixel accuracy.
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Figure 3.3: A fast marker detection algorithm, processing a row of the im-
age from left to right. In the two left images, not marker is found. The
third image shows a detection, as the vale is above a configured threshold.
The right image shows which pixels are searched to extend a label of a
potentially already detected marker.

Robustness. Infrared light from other sources can lead to false pos-
itive detections. As an example, when the door of the DAVE is open,
some ambient light enters the room. Also, a halogen ceiling light may
be switched on and leads to partially very bright spots. If during pro-
cessing, too many markers are counted, the processing of the image
is aborted. This is done to prevent the whole system from blocking
while waiting for the thread.

Figure 3.4: An exemplary camera image (top left, enhanced levels in the
bottom left) with some ambient light present. The result of filtering and
thresholding is shown in the top right (enhanced levels in the bottom
right). One marker of the glasses is not recognized. The ambient light
leads to five additional detections which does not break or significantly
slow down the tracking of the glasses and the joystick.

The simplified pseudo code example on the next page illustrates the
marker detection. Failure cases are too dark or partially occluded
markers, resulting in a wrong position. As markers touching the
image border are also likely to return the wrong position, they are
discarded.

Subsequent Position Refinement. To find evenmore precise center
positions of markers, a subsequent and more complex algorithm was
tested to refine the positions. As the marker positions are already
known, the overhead is not high for the fewmarkers. In that approach,
the marker center is computed multiple times for different intensity
thresholds and the average position of accepted values is calculated.
However, in practice no noticeable improvements result and this
approach is not used.
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1 const int hDist = 3; // horizontal distance of samples
2 const int threshold = 30; // absolute threshold for detection
3 for (each line/row y in the region of interest ) {
4 for (each column x in the region of interest minus a hDist pixel wide border) {
5 float value = 2∗img(x, y) − img(x − hDist, y) − img(x + hDist);
6 if (value > threshold) {
7 if (does left pixel belong to a known−marker?) {
8 m = known−marker; // yes, use that marker
9 } else {

10 // its a new marker in this line
11 if (does it touch a known−marker in the previous line?) {
12 m = known−marker; // yes, use that marker
13 } else {
14 // add new marker
15 MarkerStruct m = {0, 0, 0, false };
16 tMarkers.push_back(m);
17 if (maximum number of blobs exceeded) return;
18 }
19 }
20

21 weight = value − 0.95∗threshold;
22 m.posSumX += x ∗ weight;
23 m.posSumY += y ∗ weight;
24 m.weightSum += weight;
25 if (marker touches image border) m.touchesBorder = true;
26 }
27 }
28 }
29

30 for (each marker m) {
31 m.posSumX /= m.weightSum;
32 m.posSumY /= m.weightSum;
33 if (m.touchesBorder) m.erase(); // remove from list
34 }

Figure 3.5: Simplified code for marker detection. The code is developed for fast processing and works reliably
in the common case. Markers that overlap, are partially occluded or are too close or too far away from the camera
will lead to wrong positions.

Possible Improvements. One possible solution to address the over-
lapping marker problem is to use circular Hough transform, as men-
tioned in [PK07].
When all markers have the same physical diameter, the pixel area in
the camera image gives a rough estimation of the distance from the
camera. This additional information may help to reduce ambiguities
in the subsequent ray intersection, but is currently not used.
Instead of only detecting points, other shapes could be used. As an
example, reflective stripes taped to the glasses are probably sufficient
for 6 DoF tracking in the DAVE. However, they will be occluded more
often and require a different, more complex code for marker detection
and subsequent modules.

3.1.2.3 2D Marker Tracking

For the initial idea of using asynchronous camera images (see sec-
tion 3.1.5), tracking is essential for extrapolating the 2D marker posi-
tion at a common time. In the current scenario, it is less important.
While in some cases it may help to disambiguate marker ray intersec-
tion over time, the following 3D marker tracking module is sufficient
in general.
With a simple assumption of linear 2D motion, a region of interest for
the currently visible markers can be predicted. This region should
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be enlarged to be on the safe side, to also detect the markers when
the prediction is wrong. Currently in the DAVE, the region of interest
is always set to the complete image, as the marker detection is quick
enough.

3.1.2.4 3D Ray Generation

The 2D marker positions are converted into 3D rays in world coordi-
nates by using the camera model with the respective calibration data
(see section 3.1.6.2). The ray is defined by the camera nodal point and
the direction vector pointing into the marker’s direction.

3.1.2.5 Triangulation by Ray Intersection

A simple method for triangulation was implemented. Hartley et al.
present several alternative methods in [HS95] that can improve the ac-
curacy, especially for rays that are almost parallel, e.g. by minimizing
the sum of the squared reprojection errors.

Figure 3.6: A closeup view of three skew rays. The shortest connection
between two skew lines is shown as thin yellow cylinder. Its center is the
assumed real intersection position (yellow sphere) of these two rays. For
more than two rays, the average position of all yellow spheres is used (red
sphere).

After all 3D rays are collected fromeach thread and copied to a new list
to be used by themain thread, the camera threads can start processing
their next images. Due to a number of errors adding up, like camera
noise and imprecise calibration, the lines will in general be skew lines
that do not intersect in the exact mathematical sense. The ray to ray
distance is compared to a threshold in order to decide whether the
rays are considered to intersect. The assumed position of the real
intersection is computed as the center of the shortest connection of the
two lines. For practical reasons, the assumed intersection positions
are simply called intersections in this document. For more than two
lines, the average of all pairwise intersection points is used. With
these definitions the intersections of all rays in question are computed
and 3D markers are generated for the respective positions. While
the algorithm can deal with all combinations of a variable number of
cameras, it does not scale very well.
The following example demonstrates how the rays for the intersection
computation are selected.
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1 Camera 1: ray 1.1, ray 1.2
2 Camera 2: ray 2.1
3 Camera 3: ray 3.1, ray 3.2
4 Camera 4: ray 4.1
5

6 Step 1: find pairs of rays (of different cameras) that intersect (note:
for the intersection test of two rays the distance of the two rays
is used: if they are closer than e.g. 1cm they are considered to
intersect with each other):

7

8 pairs : (1.1 3.2) (1.2 2.1) (1.2 3.1) (1.2 4.1) (2.1 3.1)
9 (2.1 4.1) (3.1 4.1)

10 triples :
11 quads:
12

13 Loop (1st pass):
14 Find groups to merge.
15 Remove groups of previous level that were merged.
16 Result:
17 pairs : (1.1 3.2)
18 triples : (1.2 2.1 3.1) (1.2 2.1 4.1) (1.2 3.1 4.1) (2.1 3.1 4.1)
19 quads:
20

21 Loop (2nd pass):
22 Find groups to merge.
23 Remove groups of previous level that were merged.
24 Result:
25 pairs : (1.1 3.2)
26 triples :
27 quads: (1.2 2.1 3.1 4.1)
28

29 Loop (3rd pass):
30 Find groups to merge.
31 None found −> exit loop.

Figure 3.7: Example demonstrating the algorithm to find each possible
combination of rays from different cameras for triangulation. Groups of
intersecting rays are enclosed in brackets (). The resulting two groups
represent one 3Dmarker each. Its position is computed via triangulation.

Once the groups of rays are found, they are triangulated as illustrated
above.
All possible ray intersections are possible positions of 3D markers.
We choose to allow multiple intersections for a ray, because multiple
markers in the same line of sight would indeed only generate one
ray. We found that getting more false markers is better for most
applications than missing a correct one. It can happen, that multiple
markers are generated instead of a single one, e.g. when for three rays,
two pairs of rays intersect and the remaining pair does not. For that
reason, markers that are very close are merged to a single marker at
their average position.
When the same marker is detected in many camera images, as many
rays are generated. While more rays per intersection should improve
the accuracy, it is also slower to compute. Also, for a more general
setup of cameras, it will be useful to give a higher weight to intersec-
tions with a lower estimated error, i.e. perpendicular rays.

3.1.2.6 3D Marker Tracking

Using information of the 3Dmarkers of the previous time steps, we try
to match the markers of the previous frame with the newly generated
markers of the current frame, passing on the ID. For a very simple
prediction of the new position, the marker speed is used, assuming
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linear motion with friction. A problem occurs if more than one new
marker is within the threshold distance. Our design decision is to use
unique IDs, so only one marker gets the ID, the others a new one. In
that case the ID of a marker may change.

Filtering. Noise perturbs the marker position results. For some
applications that directly use a marker position, e.g. to draw a line
in space, filtering may be advantageous for smoother results. A well
suited method is a Kalman filter [WB95]. As a filter also introduces
latency depending on the amount of filtering, it is advisable to let each
individual application configure the trade-off between smoothness
and latency. Currently, we do not use such a filter e.g. to reduce noise
or smooth a path of a marker.
The information on all individual 3D markers is complete and is
copied to the network thread, providing the data with the lowest
latency as possible.

3.1.2.7 Target Recognition

The pairwise distances of all markers are computed in a first step. All
six distances of each combination of four markers are then compared
to the pairwise distances of each of the learned targets. Possible
matches within a threshold are chosen, giving a number of possible
targets with the respective marker IDs for each of its vertices. Thus,
for a new recognition of a target, all its markers must be visible in our
implementation.
This step scales linearlywith the number of known targets, but compu-
tation time grows a lot quicker with the number of detected markers
with O(n2). One idea to speed up the computation was to cluster close
markers and only search within a cluster. In an early attempt we used
a modified version of Kruskal’s minimum spanning tree algorithm,
were long edges above a threshold are not added. However, using
that algorithm does not make any sense because still all pairwise
distances need to be computed. Instead, the clustering should have
a lower complexity. Some sort of local hashing or bucket sort with
overlapping buckets may be a solution but was not yet implemented.
Pintaric et al. describe an additional quick rejection of wrong target
constellations to further improve the performance [PK07].

3.1.2.8 Target 6 DoF Computation

To compute the best fitting 6 DoF pose of the learned target to the
measured markers, the Kabsch algorithm [Kab76], [Kab78] is used.
It is designed to find the root mean square deviation (RMSD) for
applications in molecular biology. The translation is computed using
the center ofmass of both point sets. Subsequently, the rotationmatrix
that minimizes themean square distance is computed. Shinji [Ume91]
presents a similar solution with singular value decomposition (SVD)
of the covariance matrix.
In rare cases, multiple marker constellations may have been matched
to the same learned target. Of all these possible matches the one with
the lowest RMSD is chosen.
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3.1.2.9 Target Tracking

When one or more markers of a target are not detected, in our imple-
mentation the target will not be detected. This choice was made to
improve the robustness of target detection. However, the remaining
markers can often still be tracked, when the target was recognized in
the previous time step. When three markers of a target are detected
and their IDs still tracked, all 6 DoF are computed. If only one or two
markers are visible, only the translation of the target is updated.

3.1.2.10 Target Filter

For similar reasons as for marker filtering, the 6 DoF of a target may
be filtered. This is especially interesting for the case when recovering
from a lost tracking. Without filtering, the target jumps to its new
state. It may be useful for some applications to smooth this jump.
Also, for a pointing device, the angular errors may lead to unwanted
jumping of the direction. Filtering can help to smooth the orientation,
or the position for a path of a stroke while sketching.
At the moment no filter is employed. For the 3D glasses we prefer
the lowest possible latency instead of smooth motion. As in daily
use a quick head motion causes a temporal loss of target recognition,
a prediction with a linear model is likely to fail. However, when
suddenly no new information on the target is available, a quick but
smooth slowing down of the motion may be more comfortable. We
have not tested this yet.

3.1.2.11 Network Transfer

Finally, the target data is also copied to the network thread. While
the main thread restarts its loop waiting for the results of the camera
threads, the network thread takes care of sending the marker and
target data to the recipients. Currently this is not done each time new
data is available, but rather on request. The original idea was that
the tracking server might extrapolate the data, trying to reduce the
latency. We have not implemented an extrapolation, as we fear that
overshooting may lead to more artifacts than the latency.

3.1.3 Latency and Timing

The diagram on the next page shows timings on a quadcore PC from
early .
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Figure 3.8: Idealized and simplified timing diagram of our optical tracking system and its relation to the DAVE timing. Process-
ing durations have been measured repeatedly in a static scene with two targets with four markers each. Black bars at the end
of each module show the variance. For a precise measurement, each module ran 1000 times in a row instead of once. Currently,
multi thread synchronization and scheduling issues introduce additional delays not shown here.
The path from the top left to the bottom right shows a close to optimal timing, with about 70 ms delay. A worst case in this
diagram would lead to almost 95 ms latency. Due to multi thread synchronization and scheduling issues, the tracking is in
reality slower (43 Hz) than shown here (64 Hz). In fact, the latency measured in the DAVE averages to around 100 ms. Note that
some values in the diagram could not be measured and were derived from computations and theoretical reasoning. Here, the
rendering synchronization is shown for a Davelib program, see section 4.2.2.2 for more details.
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The total latency in the DAVE was measured by rolling markers on
the floor and projecting a point at the predicted position, assuming
linear motion. Approximately 100ms latency is measured. This can
be perceived, e.g. with the joystick and a rendered pointing ray for
picking, when quickly moving the joystick. There are a number of
possible improvements to reduce the latency of the tracking system:

• A brighter illumination for a shorter exposure time.
• Cameras with faster image transfer, e.g. a gigabit ethernet in-

terface.
• Cameras with onboard marker detection (with a reported la-

tency of 8.3ms, the affordable V120:SLIM cameras by OptiTrack
with onboard processing are three times faster than our system).

• Better usage of temporal coherence.
• A region of interest of the camera that can be set quickly.
• A faster PC (the current one is five years old).
• A GPU implementation for target detection.
• An improved accuracy so that less rays must be handled by the

ray intersection.
• A hybrid tracking, e.g. a combination with inertial sensors and

gyroscopes.
Additionally, to reduce overall latency in the DAVE, rendering could
be synchronized with the tracking system, starting once the new
tracking data arrives. Finally it would help if the projectors could
switch to the new image at once instead of buffering it, similar to
disabling the v-sync of monitors.

3.1.4 Alternative System Using Epipolar Geometry

Instead of ray intersection in 3D space, another common approach
is to transform the rays to lines in 2D image space of the other cam-
eras. These epipolar lines are actually curves due to the radial lens
distortion. The framework was modified to also allow this approach.
However, this was never implemented to a degree where it worked
well. This approach is used e.g. by the io tracker.

3.1.5 Asynchronous Image Capture

The original idea for image capture was to use a dynamic region of
interest of the cameras. Delivering only a subwindow, the Prosilica
EC750 cameras can transmit images with up to 200 Hz. Theminimum
and maximum 2D coordinates of currently visible markers, plus a
safety border can be used to compute the region of interest for the next
frame. As each camera has a differently sized region of interest, the
capture rate is also different in general. With each camera measuring
as quickly as possible, the 2D marker positions can be tracked and
extrapolated to a common time step, raising the system frame rate in
total.
When this was implemented (except for the extrapolation) and tested,
to our surprise, the frame rate wasmuch lower thanwithout using the
region of interest feature. This is due to an undocumented hardware
limitation, causing a delay of 30ms - 40ms to set a new region of
interest. On request the manufacturer informed us, that only the
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much more expensive cameras could instantly switch to a new region
of interest. Of course, the region of interest could be set less frequently,
but as this is necessary especially at fast movements, it does not make
sense, as this is the time when the tracking is most important. As
mentioned, the region of interest was also tested for just the software
marker detection, but it does not result in a large speed up of the
whole system.

3.1.6 Calibration for Optical Marker Tracking

Camera calibration techniques for intrinsic and extrinsic camera cali-
bration are presented by Tsai [Tsa92] and Zhang [Zha99]. There, one
or more calibration images are used. Often checkerboard patterns are
employed, allowing a simple and precise automatic detection of the
reference points. However, in our setup a large calibration pattern
is necessary for accurate results. For practical reasons, commercial
3D tracking systems use a different method, consisting by two steps.
First, a calibration target is wanded randomly in the tracking volume
to register the cameras to each other, then a reference target is used
to define the coordinate system. Motivated by that process we also
use wanding but just with a single marker. This idea is also described
in [SMP05]. Differences between one and two point targets for calibra-
tion are discussed in [DU02]. With bundle adjustment and especially
outlier detection, the calibration with two markers at a fixed distance
will be quicker and more robust, see [TMHF00] for a comprehensive
description the subject.
One of the weakest points of the tracking system is its calibration. It
is not very user friendly and takes some time, but it is also only rarely
necessary, i.e. about once every two years in the DAVE.

3.1.6.1 Calibration Procedure

The calibration procedure consists of several steps. First, a single
marker is recorded while being placed at a number of different posi-
tions, one after another, whose world coordinates are known or mea-
sured with a tape measure. Second, that marker is slowly wanded,
trying to cover most of the important tracking volume. During the
measurements, its 2D positions in all camera images are recorded.
Third, the necessary data is specified in the calibration configuration
file, i.e. the time codes when the markers were recorded at the known
world coordinates plus the respective coordinate values, as well as
the start and end time of the wanding. This step may be avoided, e.g.
by analysing the recorded data or by pushing a button of a wireless
device each time the marker is on a reference position or the wanding
starts or stops. It is also helpful to specify a rough position of the cam-
eras. Fourth, the interactive calibration software is started, where the
camera viewing direction can be rotated with the mouse for a rough
initialization of the orientation in order to provide good enough start
values for the optimization.

3.1.6.2 Camera Models

A standard camera model with intrinsic and extrinsic parameters is
used, as illustrated below.
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1 Ray get3DRay(float pixelX, float pixelY) {
2 int maxWidthHeight = max(width, height);
3

4 // normalized pixel coordinates
5 double nrmX = (marker[i].x−imgCenterX) / maxWidthHeight;
6 double nrmY = (marker[i].y−imgCenterY) / maxWidthHeight;
7 double distSqr = (nrmX∗nrmX) + (nrmY∗nrmY); // squared distance from image center
8

9 // undistorted pixel coordinates
10 double undistX = nrmX ∗ (1 + distSqr ∗ (radialDistortionDistP2 + distSqr∗radialDistortionDistP4));
11 double undistY = nrmY ∗ (1 + distSqr ∗ (radialDistortionDistP2 + distSqr∗radialDistortionDistP4));
12

13 Ray ray;
14 ray.x = position [0]; // camera position
15 ray.y = position [1];
16 ray.z = position [2];
17 ray.dx = imgPlaneDir.x + undistX∗imgAxisX.x + undistY∗imgAxisY.x; // direction
18 ray.dy = imgPlaneDir.y + undistX∗imgAxisX.y + undistY∗imgAxisY.y;
19 ray.dz = imgPlaneDir.z + undistX∗imgAxisX.z + undistY∗imgAxisY.z;
20 return ray;
21 }

Figure 3.9: A standard camera model with second order radial lens distortion, used for the 3D optical tracking.

The model above is restrictive. Lens distortion that cannot be de-
scribed by the model can not be corrected for. As the mean backpro-
jection error of 0.6 to 0.9 pixels is larger than we had expected, an
additional local lens deformation model was tested, but no improve-
ments were achieved. Ricolfe-Viala et al. show a more sophisticated
realization of this idea [RVSS10], requiring a separate calibration of
lens distortion with a large number of known point positions on a
planar calibration target.
The literature suggests that the employed camera model should be
accurate enough.
Another attempt was to use a generalized camera model, where the
direction is computed by a general function with 36 parameters, as
shown below.

1 Ray get3DRay(float pixelX, float pixelY) {
2 // normalized pixel coordinates
3 int maxWidthHeight = max(width, height);
4 double u = (pixelX−imgCenterX) / maxWidthHeight;
5 double v = (pixelY−imgCenterY) / maxWidthHeight;
6

7 Ray ray;
8 ray.x = position [0]; // camera position
9 ray.y = position [1];

10 ray.z = position [2];
11

12 // direction of the ray
13 ray.dx = c[0];
14 ray.dy = c[1];
15 ray.dz = c [2];
16

17 ray.dx += u∗c[3] + v∗c[4];
18 ray.dy += u∗c[5] + v∗c[6];
19 ray.dz += u∗c[7] + v∗c[8];
20

21 ray.dx += u∗u∗c[9] + u∗v∗c[10] + v∗v∗c[11];
22 ray.dy += u∗u∗c[12] + u∗v∗c[13] + v∗v∗c[14];
23 ray.dz += u∗u∗c[15] + u∗v∗c[16] + v∗v∗c[17];
24 ...
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25 ...
26 ray.dx += u∗u∗u∗c[18] + u∗u∗v∗c[19] + u∗v∗v∗c[20] + v∗v∗v∗c[21];
27 ray.dy += u∗u∗u∗c[22] + u∗u∗v∗c[23] + u∗v∗v∗c[24] + v∗v∗v∗c[25];
28 ray.dz += u∗u∗u∗c[26] + u∗u∗v∗c[27] + u∗v∗v∗c[28] + v∗v∗v∗c[29];
29

30 ray.dx += u∗u∗u∗u∗c[30] + v∗v∗v∗v∗c[31];
31 ray.dy += u∗u∗u∗u∗c[32] + v∗v∗v∗v∗c[33];
32 ray.dz += u∗u∗u∗u∗c[34] + v∗v∗v∗v∗c[35];
33

34 return ray;
35 }

Figure 3.10: An attempt of an alternative generic camera model.

This camera model works, but the calibration is less robust. As an
example, there is no assumption that the pixel coordinate system is
orthogonal. This knowledge is not used and must be introduced with
an additional error term. Also, more parameters need to be optimized
and the optimization is trapped easier in local minima.

3.1.6.3 Optimization of Camera Parameters

For the optimization of the camera parameters, we developed an own
tool that can visualize the result. For debugging purposes, this can
be manually triggered in small steps and visually controlled, to bet-
ter understand what happens during optimization. This proved as a
valuable tool to find the right optimization conditions. The calibration
uses a simple to implement, steepest descend method, that unfortu-
nately suffers from local minima problems. To help escape from such
minima, we can also modify the parameters by small random values,
usually achieving better results after a new optimization. However,
with a good initialization, like the values of a previous calibration,
the whole procedure is quite quick and soon leads to good results.

Minimization Terms and Conditions. It is not easy to intuitively
define the correct error terms to minimize. As an example, our first
attempts minimizing the ray intersection distance caused all cameras
just tomove very close together, soon leading to numerical instabilities.
A few optimization criteria were tested to find a robust optimization.
Our final solution is a weighted sum of two error values. Both of
them sum the fourth powers of distances. The high exponent stronger
penalizes large errors. The first set of distances is used to snap the
solution to the measured world coordinates. The distances of the
rays to these coordinates are computed and their fourth powers are
summed up to give the first error value. The second set of distances
uses the data from wanding. A few hundred measurements are
randomly selected. To avoid a possible error at fast motion due to
software synchronization, only slowly moving marker positions are
accepted. only accepting measurements during a slow motion of the
marker. The distances of each ray to their common intersection point
are computed and their fourth powers are summed up, resulting in
the second error value. The choice of these distances to the common
intersection point proved to be much more stable for optimization
than the direct ray to ray distance which tends to move the cameras
together. The two weights should be adjusted so that these two error
values, normalized to the number of used points, should lie in the
same order of magnitude. Outliers are not rejected but are not a
problem, as the lighting can be well controlled during calibration. In
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all the years, only a single time an outlier occured, which could easily
be seen in the visualization and ignored by restarting the program,
thereby choosing a different set of random markers.
The steepest decent minimization needs many iterations and gets
stuck in local minima. Also, a good initialization is required. It is
used because of its simple implementation. The pseudo code below
illustrates the optimization. As this minimization does not converge
very well, it is run several times with different step lengths. To avoid
local minima, a low amount of random noise may be added.

1 float computeError() {
2 // distance of rays to predefined world coordinates should be minimal
3 float error1 = 0;
4 for ( all worldCoordinateDefs w)
5 for ( int cam=0; cam<cameras.size(); cam++) {
6 Ray ray = cameras[c].get3DRay(w);
7 // squared distance of point to ray
8 float distSqr = pointRaySquareDist(ray, worldCDefs[w]);
9 error1 += distSqr∗distSqr; // power of 4

10 }
11

12 // distance of rays to common intersection 3D position should be minimal
13 float error2 = 0;
14 for ( all randomly chosen frames f from wanding) {
15 // add distances of each line per frame to each other line
16 Point point = computeIntersection(f);
17 for ( all cameras c) {
18 Ray ray = cameras[c].get3DRay(f);
19 // squared distance of point to ray
20 float distSqr = pointRaySquareDist(ray, point);
21 error2 += distSqr∗distSqr; // power of 4
22 }
23 }
24 return error1 + error2;
25 }
26

27 void minimizeOneStep() {
28 // compute gradient numerically
29 float current_value = computeError();
30 for ( all cameras c) {
31 for ( all camera parameters p) {
32 original_parameter = camera[c].parameter[p]; // backup parameter
33 camera[c].parameter[p] += small_value; // modify a little
34 new_value = computeError();
35 gradient[c ][ p] = new_value − current_value;
36 camera[c].parameter[p] = original_parameter; // restore parameter
37 }
38 }
39 gradient.normalize();
40

41 // step along gradient
42 for ( all cameras c) {
43 for ( all camera parameters p) {
44 camera[c].parameter[p] −= stepSize ∗ gradient;
45 }
46 }
47 }

Figure 3.11: Pseudo code for one step of a simple steepest gradient minimization.

The video below shows the tool for calibration, interactively showing
the results. To get an impression of the quality of the calibration,
statistics are computed and printed for the mean of the maximum
distance to a common intersection (4mm in the example), the maxi-
mum distance to a reference coordinate (8mm in the example) and
the mean reprojection error in pixels (0.9 pixels in the example).
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Figure 3.12: Video (without audio) showing a time lapse calibration procedure with the interactive optimization
application. After manually setting a rough initial guess, the evolution of camera parameter optimization to a
precise calibration is shown. Note the distorted camera frustum. The whole video is sped up by a factor of ten.

3.1.6.4 Target Creation and Learning

To distinguish targets, they need to be sufficiently different to each
other. But also the pairwise marker distances within a target should
be sufficiently different in order to minimize computation time. For
four markers there are already six pairs of markers and make the
task harder than it may first appear. But also if e.g. two distances
are very similar, the tracking will still work, because the best fitting
target of multiple options is chosen in the end. The iotracker software
suite even provides a tool to help generate good targets, presented by
Pintaric et al. in [PK08].
To add a new target, its marker positions are measured. This assumes
the target is placed at the origin of the coordinate system. If e.g.
an additional translation is necessary, the values can be modified
manually. It can happen that an additional marker is measured which
has to be removed manually. Since the positions are based on a
single measurement, they may not be very precise. It is possible
to activate a target optimization module, that computes continuous
measurements of a moving target. Average pairwise distances are
used to appropriately adjusts the target vertex positions.

3.1.6.5 Possible Improvements of the Calibration

We found that it is hard to simplify the whole calibration procedure
for the operator. Other tracking system calibrations are similar, but
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often use a special target to define the origin and orientation of the
world coordinate system, rather than measuring the positions with
a tape measure. Usually, such targets are relatively small for prac-
tical reasons, thereby limiting the absolute precision. The camera
parameter optimization of commercial systems usually works orders
of magnitudes faster than our current implementation. A reduced
number of unknown parameters will lead to a more robust optimiza-
tion with possibly more accurate results. This can be achieved by a
separate calibration of the lens distortion parameters. Often, printed
checkerboard patterns are used for this purpose. In the DAVE setup
this is unpractical, as a small pattern is not in focus close to the cam-
era, but the pattern should cover a large part of the image. Also,
additional illumination or retroreflective calibration patterns are nec-
essary. Instead, several images of a straight line can be recorded for
each camera. A retroreflective stripe can be stretched under tension
by a bow to ensure linearity. The line in the camera image appears
curved, and in the camera image points on this curve can easily be
extracted automatically to optimize the lens distortion parameters, as
described in [AF01].

3.1.7 Related Applications for 3D Tracking

Tracking System for Magnetic Resonance Imaging. For a differ-
ent application we assessed the accuracy of the tracking with two
cameras for a small working volume of about 30cm×30cm×20cm. In
Magnetic Resonance Imaging (MRI) of a head, the scan takes some
time and motion is an issue. Slices of the head are scanned with
progressing time. With head tracking, the excitation plane can be
corrected according to the current head position. With that method,
a registered scan without gaps results. Measuring a target composed
of reflective markers attached to a mouthpiece, with cameras several
meters away, the accuracy is not high enough. Details can be found
in [Dol10]. To increase the accuracy, the idea is to place two cameras
with the least amount of metal as possible very close to the head
inside the scanner, hoping not to interfere with the scan results too
much. The PC for signal processing should be outside the shielded
room and communication between cameras and PCmust be achieved
with an optical link, as electrical wires would act like antennas and
reduce the scan quality. Unfortunately, with our implementation,
the required accuracy cannot be achieved yet. To further investigate
the reasons, a lot more effort is necessary to individually assess the
accuracy of the different components. As an example, we suspect that
the lens distortion model may be insufficient for the lens focused at a
close range.

Camera Tracking. There is another application for the algorithms
above, that at the first sight has notmuch in common: camera tracking
software, alias matchmoving software. For a 2D movie of a mostly
static scene, it computes the camera position and orientation relative
to the scene. Using natural features instead of markers and treating
each image of themovie as if itwas taken by another camera, the task is
very similar to the calibration described above. Subsequently, the 3D
position of the natural features can be computed to help composition
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of 3D elements. In fact, Vicon, one of the leading companies of 3D
tracking systems, also offers a high end professional camera tracking
software called boujou.

Motion Capturing. To record human motion with optical tracking,
markers are placed close to joints to recover a skeleton animation. As
the tracking of single markers can fail due to occlusions or fast motion,
this is not a trivial task. An editor was implemented to automatically
remove wrong detections and connect trails in a first step. Length
constraints and heuristics are used. If the automatic processing cannot
recover all information, a manual editing is possible. A short movie
was produced with a human animation recorded with this method.
A real time pose detection was planned, but the data provided by the
tracking system is not reliable enough.

Figure 3.13: Motion Capture editor.

3.1.8 Results and Future Work
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Figure 3.14: Jitter of a static marker near the center of the tracking volume.
The histogram of the distances to the mean position of the marker is illus-
trated. The jitter is caused by the influence of sensor noise of the camera
(mean distance error = 0.044mm).

Accuracy. Measurements are pro-
vided by the calibration software
to in order to get an overview
of the quality of the calibration.
These values are not directly op-
timized and by using a set of ran-
dom measurements, different to
the measurements used for op-
timization, the following results
are achieved. For these measure-
ments, the system is used as it is
configured in daily use, with the
calibration done three months be-
fore. Motivated by an analysis
of the iotracker in [PK07], we
also performed similar measure-
ments.
The jitter of a static marker close

to the center of the tracking volume was measured. The jitter occurs
due to sensor noise and does have a very small influence on the
position, as expected. Our results are similar to [PK07].
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We also measured the absolute distance between two markers rigidly
attached to a stick, similar to [PK07]. The stick wa moved with dif-
ferent speeds in the center and at the border of the tracking volume
and occlusions were present. The results below indicate that the
measured error consists of a term related to the position within the
volume and a systematic constant term. These errors can probably
be largely decreased by using such a stick for calibration, imposing
the fixed distance as an additional optimization criterion. Our results
seem to be slightly better than the ones in [PK07]. In the measure-
ments, partial occlusions of multiple markers hardly occurred. In
practice however, markers of a target lead to such constellations and
decrease the accuracy.
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Figure 3.15: Distance measurements between two markers on a stick. The
stick was moved slowly near the center of the tracking volume first, then
quicker and further towards the borders. At the end of the measurements,
sometimes onemarker was occluded and the other onewas detected twice.
These outliers were removed for the computation of the mean and stan-
dard deviation. The systematic scaling error of 0.75% is caused by the
slightly biased calibration method.

In another experiment a marker was moved around on the floor of the
DAVE. The floor is based on a wooden construction and is not exactly
planar, but is still good enough for an impression of the absolute
accuracy of the measured height. The results show a clear offset
towards the up direction. We assume that this offset is mostly due
to the scaling error. Again, this measurement could be integrated
into the calibration and largely improve the results. Such a criterion
should be optional, as not all setups may have a tracking volume that
extends to a floor or another planar surface.
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Figure 3.16: Assessment of the absolute error. Amarkerwas slowlymoved
along the floor of the DAVE, i.e. at the border of the calibration volume.

For the angular jitter of a static target we recorded the orientation (as
in [PK07]) for several positions in the tracking volume. In one corner,
no jitter was present at all. We assume that all markers were only
detected with a single pixel above the threshold. This means that
this analysis is not meaningful. Better meaningful relative accuracy
measurements may achieved by recording a target with a known
motion. This may be realized e.g. by mounting it on a large turntable
or the wheel of a bike. The perfect circle may be fitted from the
data, the deviation from the interpolated position may give a more
meaningful information on the error of position and orientation.

Update Rate. As the threads for capturing the camera images and
processing the 2D information start with some delay, they are not
synchronized at the program start. A number of locks, guards and
barriers are placed to synchronize the threads while trying to keep
the latency as low as possible. The maximum frame rate is limited
by the image transfer of the cameras to around 64 Hz. The actual
framerate with few markers is only around 50 Hz, even though pro-
cessing should be just fast enough. A possible improvement may be
to move the camera triggering into the main thread by adding an
additional module. In that way, the synchronization by hardware will
better fit to the ProsilicaAPI. When also showing graphical debugging
information, the framerate drops to about 30 Hz, as OpenGL is used
by each thread but the same context only allows exclusive access to
one thread at a time. As this mode is only used for debugging, this
is no problem. For tracking more than two or three targets at that
framerate, further performance improvements are necessary.

Conclusion and Future Improvements. We succeeded in creating
an affordable tracking system that is used in the DAVE. We also had
the vision to release the software as open source to the community
to provide a basic system, ultimately hoping to also profit from de-
velopment by other contributors. Unfortunately, this could never be
realized due to conflicting commercial interests of our lab.
The most valuable possible improvements are a better calibration
procedure, hardware synchronization of the cameras and brighter
flashes, and a GUI for a simpler configuration.
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3.2 MULTI TOUCH TRACKING

Figure 3.17: Multi touch test on the HEyeWall.

3.2.1 Related Work

Freely available and open source libraries exist to detect bright spots
in a camera image and send the positons over a network interface.
Tbeta (formerly touchlib) and reacTIVision are examples. Also, more
flexible vision tools like VVVV can be used for the task. In some
libraries, performance is not optimal or difficult lighting conditions
cannot be handled.
The TUIO protocol [KBBC05] is established as a quasi standard as
a network interface for the detected points. However, recent com-
mercial hardware also or only supports the Windows 7 multi touch
messages.
Freely available multi touch tracking frameworks already existed
when we built our first setup. However, none of them supported
multiple cameras natively. A possible work-around was to resample
and stitch several camera images into a single large image to then
pass it to an existing framework. The popular touchlib was written
using a set of modular image filters. Greyscale conversion, bright-
ness, contrast, thresholding and blob detection were each individual
modules having to access and modify the whole image data for each
filter. With that work-around, stitching and all filters are processed
by a single thread, resulting in low update rate.

3.2.2 Tracking System Software Components

For the sake of speed and accuracy, own softwarewaswritten, reusing
large parts of the 3D tracking software. It natively supports multiple
cameras and allows remote calibration when the cameras are not con-
nected to the displaying computer. Furthermore, the IR illumination
can be controlled, e.g. in order to capture FTIR and DI in alternating
frames.
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A naïve approach to use multiple camera images is to first undistort
each image for radial lens distortion and then stitch the individual
images into one larger image. This step takes a lot of time and re-
sampling artifacts occur. Instead, in our system, finger touches are
detected individually, with one thread per camera image. Subse-
quently, lens distortion correction and transformation into a global
coordinate system are performed. The main thread fuses this infor-
mation and passes the results to the network thread. This approach
does not lead to resampling artifacts in the camera images, needs a
lot less processing and parallelizes all time consuming computations
with multiple threads. Again, the idea of open sourcing the software
could never be realized.
As large parts of the 3D optical tracking software were reused, only
the differences are described below.

3.2.2.1 Image Capture and Transfer

The image capture module supports controlling an IO port of the
camera that is used to switch the IR illumination on or off. This
allows to capture a background image with only the ambient light for
a subsequent background subtraction. Especially to allow adaption
to slowly changing ambient lighting, this may be useful. Currently,
the illumination is constantly turned on.

3.2.2.2 Background Model

Aproblem of the hardware setup described above is that the reflection
of the projector in the acrylic glass is visible in the camera image as
a very bright spot. Without further hardware filters or redundant
cameras, this area is a blind spot to the touch input. Also the IR
illumination might be directly visible or lead to bright areas in the
camera image. The figure below illustrates the situation.
To avoid wrong detections caused by that light, background sub-
traction may be used. Unfortunately, the acrylic glass slightly bends
under the pressure of a finger and the reflection of the projectormoves
slightly. With the imperfect silicone coating of the HEyeWall, air bub-
bles appear as small bright spots that also move when touching the
screen. They are very hard to automatically distinguish from bright
spots caused by touching fingers. Also, the camera may move slightly
so that the LEDs or the frame surrounding and holding the screen
may cause wrong detections, e.g. when users lean on the border of a
table setup.
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Figure 3.19: Camera images of the setup, showing the illumination. LEDs
only (top left), projectors only (top right) and both together (bottom left)
as the condition in normal operation. For calibration, using the 3rd bright-
est pixel of some 20 captured images, pushing on different parts of the
screen, moving reflections can be taken into account without also record-
ing the touches. The resulting eroded image for background subtraction
is shown on the bottom right. Note that white regions are blind spots for
that camera. For better illustration, the images are brightened with a gain
factor (first three images) and gamma correction (last image).

We use three methods to solve these problems, two of them are done
in this module and described below.
First, to obtain a background image, twenty images are recorded
with half a second delay between each capture. During this time the
projectors display a white image. A short beep indicates the moments
when images are captured. The operator pushes on different locations
during that process. For each pixel, the third brightestmeasured value
of all images is used. In that way, the touched positions will not lead
to blind spots, but the moving reflections are taken into account. The
numbers can be changed in the configuration file.
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Figure 3.20: Structuring element
for morphological dilation. This
leads to extended bright regions in
the background image.

Second, a morphological dilation is performed with the structuring
element shown on the side. This operation smoothly extends bright
regions to allow a slight motion of the bright spots without an erro-
neous detection.
The third method is a mask image that is applied in the next module
and is described there.
Over time, the lighting situationmay change slightly, leading towrong
marker detections. This is a common problem in practice. A dynamic
update of the background image would be advisable to adapt to such
slow changes automatically. This may be possible when the screen
is in use, so that locations where no touch is detected are used to
learn the updated background. However, if the screen is not used, the
projector reflections are static and can not be adapted to the situation
when they move again. This issue should be addressed by improved
hardware as suggested in the previous chapter.

3.2.2.3 Blob Detection

The blob detection module is almost identical to the marker detector
of the 3D tracking system (see section 3.1.2.2). The approach is more
effective compared to the touchlib that sacrifices performance with
many passes (five for our test setup).
In addition to the described detection, an additional check is per-
formed per pixel, comparing the gray value of a mask image to a
configured threshold. Only if the value is higher than the threshold,
marker detection is performed for that pixel position. This allows
to mask out previously defined regions, addressing the problem of
detections caused by the frame of the screen. This is the third method
to avoid unwanted detections. The generation of this mask is done
by the calibration module and is described in section 3.2.3.2.
The blob detection usually performs very well, but for a fast motion
of a single finger, in rare cases two blobs may result that are close to
each other. This may break the tracking and cause a change of the ID.

3.2.2.4 Transformation to World Coordinate System

The detected blob coordinates are transformed from the camera co-
ordinate system to the common world coordinate system. We chose
the same world coordinate system that is used for the geometric cali-
bration of the display (see section 4.2.3.1). Two parameters for radial
lens distortion and a homography are computed by the calibration.
All of the camera parameters are listed below.

1 float a, b, tx, c, d, ty, e, f , g; // homography
2 float radialDistortionDistP2; // radial distortion , degree 2
3 float radialDistortionDistP4; // radial distortion , degree 4
4 float imgCenterX, imgCenterY; // image center in pixels, for radial

distortion
5 int width, height; // camera image dimensions

Figure 3.21: Parameters of camera model for the multi touch tracking sys-
tem.

The application of the transformation is straight forward, as the fol-
lowing code shows.
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1 Vec2 pixel2World(float pixel .x, float pixel .y) {
2 int maxWidthHeight = max(width, height); // of camera image
3

4 // lens distortion
5 double nrmX = (pixel.x − imgCenterX) / maxWidthHeight; //

normalized pixel coordinates
6 double nrmY = (pixel.y − imgCenterY) / maxWidthHeight;
7 double distSqr = (nrmX∗nrmX) + (nrmY∗nrmY); // squared distance

from image center
8 double undistX = nrmX ∗ (1 + distSqr ∗ (radialDistortionDistP2 +

distSqr∗radialDistortionDistP4)); // undistorted pixel coordinates
9 double undistY = nrmY ∗ (1 + distSqr ∗ (radialDistortionDistP2 +

distSqr∗radialDistortionDistP4)); // undistorted pixel coordinates
10

11 // homography
12 double w = e∗undistX + f∗undistY + g;
13 float worldX = (a∗undistX + b∗undistY + tx)/w;
14 float worldY = (c∗undistX + d∗undistY + ty)/w;
15 return Vec2(worldX, worldY);
16 }

Figure 3.22: Transformation of detected points from the camera coordinate
system to the world coordinate system, using the camera parameters from
the previous listing.

Note that during measurements for calibration of the camera parame-
ters, no transformation is applied in this module and the coordinates
stay unmodified.

3.2.2.5 Blob Fusion

Fusing the information ofmultiple camera images is realized by fusing
close blobs from different cameras. When the same finger is detected
by two cameras, the transformation to the common world coordinate
system results in the same position except for a small error by noise
and imprecise calibration. These blobs from different cameras within
a threshold distance are fused to a single blob.
It is also possible to use two cameras looking at the same area from dif-
ferent viewpoints. This can be useful e.g. to avoid the blind spots from
a projector reflection. It also allows to handle occlusions in setups
where the camera and user are on the same side of the screen, like it
is the case for a front projection setup as described in section 3.2.5.1.

3.2.2.6 2D Blob Tracking

To reassign the IDs known from the previous time steps to the newly
detected blobs, a more sophisticated algorithm is used than for the
3D tracking.
As before, the position of a circular search area of a predicted blob
is derived by old known blobs. However, the radius is not constant
but grows with the blob’s speed. This allows a higher tolerance for
quickly moving fingers. Again, the problem arises that several newly
detected blobs might be within the search area of a single old blob,
so only the closest blob is chosen get that ID assigned. Even with a
single erroneous frame with two detections instead of one, the wrong
one may get the ID, causing a release event of the old ID in the next
frame when a single marker is detected again.
It is desirable for some applications that the same ID is kept for the
same finger. To avoid a change of the ID when no finger is detected
only for a few frames, the information is kept for a few frames, mov-
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ing into the predicted direction with a growing search radius. The
prediction assumes linear motion plus drag to quickly slow down
motion of predicted markers.
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Figure 3.23: Blob tracking working correctly on the left. The center and
right figures show failure cases.

Some external applications assume that the first touching finger al-
ways has the ID 0. To enhance compatibility with these applications,
the ID counter is reset after a short while without any detections.

3.2.2.7 Network Transfer: TUIO and Proprietary Protocol

The TUIO protocol is used to send the information to the client appli-
cations and is widely used. For the calibration, a proprietary protocol
is used that can transmit the camera number for each detected point
for the calibration. A new version of TUIO could also be used, as it
allows to embed custom data fields.
To work with applications that only support the Windows 7 mes-
sages, freeware bridges exist that translate the messages from TUIO
to Windows 7 without a noticeable delay.

3.2.3 Calibration

3.2.3.1 Geometric Calibration

As the cameras cannot see the display content, the easiest way for
geometric calibration is to display a few points that the operator has
to touch, one after another. To add robustness, we chose to require
that the touch must be one second long. During that time, an arc is
displayed that completes a circle, providing a progress feedback (see
section 4.3.4.2). In case of the HEyeWall, the measurements rely on
geometrically calibrated projector images.
The first eleven parameters of the camera model are optimized, i.e.
homography and some radial lens distortion parameters. The center
of the distortion is assumed to be at image center, a good approxima-
tion that helps to avoid overfitting. With two variables per measured
point, at least six calibration points are necessary for each camera.
The more points are added, the better the calibration gets. At the
moment, no outlier detection and rejection is performed, assuming
perfect measurements.
As display and tracking for the HEyeWall is split up to several com-
puters, the program measuring these calibration points is a normal
Davelib program (see section 4.2), with the tracking running on a dif-
ferent computer in a special calibration mode. The already described
custom network protocol is used that includes the camera number
for every touch point.
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The calibration itself is again computed with the steepest gradient
optimization to minimize the squared distances. For this case, it is
stable and works well. Even though a good initialization is not hard
to compute, for our setups it is sufficient to initialize with the identity
and no lens distortion, also for the HEyeWall setupwhere the cameras
are rotated by 90 circ.

3.2.3.2 Mask Image Generation

To address the problem with the frame generating detections outside
of the screen, a mask image is computed only using the geometric
calibration data as input. It is realized as a distance transformation,
where the gray values represent the distance from the border in pixels.

Figure 3.24: Background image of our table setup on the left. In this setup,
leaning on the table can easily cause the frame to generate several touch
points on and outside the border of the visible region. To efficiently ig-
nore these signals, we automatically compute a distance map that is used
as a lookup to only generate blobs inside the area visible to the users, with
a border width that can be configured. It is shown on the right with ad-
justed levels for better illustration.

In that way, the border width can be configured without having to
redo the computation by simply changing the threshold distance.
The mask image may also be edited manually to mask out additional
regions, e.g. for setups that do not have a rectangular screen.

3.2.3.3 Calibration Procedure

The calibration procedure consists of the following steps:
• Background training
• Pushing on a few points that are displayed
• Computation of the calibration computation (geometric and

mask image)
For the HEyeWall, the second step is performed separately for each
camera. A script calls the same program with different parameters.
In that way, no specialized software is necessary that only works for
the HEyeWall (see also section 4.3.4.2).
In some setups, the second stepmay be automated when the projector
light is at least slightly visible to the camera. The projector shows the
point to be calibrated as a white circle on a black background. A long
time exposure may show the difference in the image and can directly
be used as camera input, resulting in a detected blob and therefore a
fully automatic calibration.
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3.2.4 Target Detection

Some multi touch hardware can directly see objects on the display
surface, similar to a camera. In a table setup, tangible objects may
be used for interaction. This is often achieved by using patterns on
their bottom side, so called fiducials. Our setups can only sense touch
points like fingers. Normal fiducial objects are too light for our FTIR
setups in order to allow a recognition. The dreaMTouch hardware
can only deliver areas that are shaded, i.e. an approximate convex
hull of objects.

Figure 3.25: A tangible object, an ar-
row with felt gliders used as fidu-
cial. Using pairwise distances of
the single detected touch points,
the touch screen can be retrofitted
with such a target recognition. The
object is made out of acrylic glass
so that not too much screen content
is hidden.

However, this is enough to allow a recognition of a fixed configuration.
Similar to the targets of the 3D tracking, 2D markers can be attached
to the bottom of an object. For the dreaMTouch setup with line scan
cameras at the display edge, we use felt gliders that block light like
finger tips would. For the FTIR setup this is unpractical, as the high
required pressurewould require a very heavy object. Instead, infrared
LEDs can be used under the object, facing down.
To enable target recognition also on commercial setups, an own soft-
ware was written to filter a TUIO stream and replace all recognized
touch points with the respective TUIO objects. The result is output
to another TUIO port.
As in the 3D target recognition, pair wise distances of markers, or
here touch positions, are used for the recognition of an object. The
compared distances tolerate an absolute distance error that should
be slightly higher than the device resolution, including signal noise.
Since the TUIO protocol uses a normalized coordinate system with
values from zero to one for both x and y axes, the y components of
distances are scaled to match the aspect ratio of the screen. Although
an arbitrary number of blobs per object is supported, our dreaMTouch
setup cannot distinguish several blobs that are very close to each other.
Thus, for the small tangible arrow in Figure 3.25, only three felt gliders
are used.
To learn a new object it is placed at the center of the screen and
all blobs are recorded to a file. Ideally, all pair wise blob distances
should be significantly different, leading to asymmetric constellations.
For each constellation of pair wise distances that fit to a previously
learned object, the position and orientation of the recognized object
are computed. Finally, the detected objects and all blobs that do not
belong to any detected object are collected and forwarded.
During our tests, accidental recognition of a set of fingers as an ob-
ject rarely occurred. Even intentionally trying to trick the system by
placing fingers at distances of the felt gliders, it is not easy to trigger
object recognition. A single measurement is taken to learn a new
reference object. For a better detection and a tighter edge distance
tolerance value, an average distance of many measurements on dif-
ferent positions on the screen should be used, like in the 3D optical
tracking software. Currently, objects are tracked by detection in each
frame, without using temporal coherence. When an object is placed or
removed from the screen, only some blobs may be detected and add
unwanted blob messages. For applications that use both objects and
blobs, this may lead to unintentional behavior. Objects should proba-
bly be only detected when all blobs appear within a short time period.
Blobs that formerly belonged to an object should be suppressed once
the object is lifted. It is also possible that a finger grabbing the fiducial
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object is accidentally recognized as a blob. Other physical shapes of
objects can easily solve this problem. We think that a higher object is
likely to be grabbed at a higher position and should solve this issue.
In summary, this method allows to retrofit fiducial object recognition
to multi touch devices that do not natively support them, without
modifying neither the multi touch driver nor the application.

3.2.5 Alternative Setups

3.2.5.1 Laser Pointer on Projection Screen

As shown in figure 2.16, most of the optical multi touch technolo-
gies rely on blob detection in 2D camera images. With no or little
modification, our software also works for other hardware setups than
FTIR.
An example is an experiment with a laptop, a projector, a webcam
and a laser pointer that is pointed on the projected image. As the
camera can see the light of the display, the geometric calibration is
performed automatically. After that calibration, the camera exposure
time is turned down and the background image is captured with
the projector showing a white image. The laser pointer dot needs
to appear sufficiently brighter than the projector image. This can
be achieved with a bright laser pointer or with a matching narrow
bandwidth filter in front of the camera lens. In general, the user will
be a fewmeters away from the screen. It is not easy to perform precise
tasks and accurately aim with a hand held laser pointer. One idea to
improve that application is to constantly use a lower powered preview
point or an additional laser diodewith a different color to help aiming.
Also, a Kalman filter may help to stabilize the recognized cursor, at
the cost of a delayed signal.
For the HEyeWall setup, an infrared laser pointer with a visible laser
pointer as a guide for aiming may be used additionally to the touch
input, without any change of the tracking system.

3.2.5.2 Laser Light Plane
Figure 3.26: Laser Light Plane
setup. Fingers entering the plane
light up. As they shadow fin-
gers behind, multiple laser line
modules can be placed around the
screen. Here, a normal table sur-
face turns into amulti touch surface
with cheap components.

The Laser Light Plane (LLP) setup uses a few laser line modules.
They consist of a laser diode and a grid of small acrylic cylindrical
lenses and are very cheap (around 3 EUR). With a mechanical setup
allowing precise adjustments, large areas can be lit. For safety reasons,
we prefer the visible red wavelength for our experiments. Again, our
software can directly be used, without the need of special adaptions
except for configuration parameters.

3.2.6 Performance and Latency

The PC used for tracking at the HEyeWall from  has four cores.
With the system running at 43 Hz, three cores have a load of about
50%, with one core at about 10% or less. The full frame rate of the
cameras of about 60 Hz is not achieved due to multi threading and
camera synchronization issues. As currently the illumination is not
bright enough, the exposure time is set to 30ms, thus limiting the
update rate.

76 3. INPUT: OPTICAL TRACKING



Camera
Hardware

Multi Touch
Tracking

Server

Clients

Projectors

0 10 ms5 ms 20 ms 30 ms 40 ms 50 ms 60 ms 70 ms

HEyeWall PCs

Camera
Threads

Main Thread

Network Ser-
ver Thread

S
of

tw
ar

e

Camera
Input Blob Detector

Blob
Fusion

TUIO Message

Image data via IEEE 1394a

Copy
Blob
ListBlob

Tracking

Cameras expose
Chip readout
(duration unknown)

Copy
Blob
List

Background
Subtraction

Camera
Input Blob Detector

Blob
Fusion

TUIO Message

Image data via IEEE 1394a

Copy
Blob
ListBlob

Tracking

Cameras expose
Chip readout
(duration unknown)

Copy
Blob
List

Background
Subtraction

Camera
Input

Image data via IEEE 1394a

Cameras expose
Chip readout
(duration unknown) Cameras expose

Camera
Input Blob Detector

Blob
Fusion

TUIO Message

Image data via IEEE 1394a

Copy
Blob
ListBlob

Tracking

Copy
Blob
List

Background
SubtractionBlob Detector

Blob
Fusion

TUIO Message

Copy
Blob
ListBlob

Tracking

Copy
Blob
List

Background
Subtraction

Render Image
Send
 State Render Image

Send
 State Render Image

Send
 State Render Image

Send
 StateRender Image

Send
 StateRender Image

Send
 StateRender Image

Send
 StateRender Image

Send
 StateRender Image

Send
 StateRender Image

Send
 State

Coordinate
Transform
Coordinate
Transform

Coordinate
Transform
Coordinate
Transform

Coordinate
Transform
Coordinate
Transform

Coordinate
Transform
Coordinate
Transform

Image
 Data
  via DVI

Image
 Data
  via DVI

Update
State

Update
State

Image
 Data
  via DVI

Image
 Data
  via DVI

Update
State

Update
State

Image
 Data
  via DVI

Image
 Data
  via DVI

Update
State

Update
State

Image
 Data
  via DVI

Image
 Data
  via DVI

Update
State

Update
State

Image
 Data
  via DVI

Image
 Data
  via DVI

Update
State

Update
State

Image
 Data
  via DVI

Image
 Data
  via DVI

Update
State

Update
State

Image
 Data
  via DVI

Image
 Data
  via DVI

Update
State

Update
State

Image
 Data
  via DVI

Image
 Data
  via DVI

Update
State

Update
State

Image
 Data
  via DVI

Image
 Data
  via DVI

Update
State

Update
State

Image
 Data
  via DVI

Image
 Data
  via DVI

Update
State

Update
State

Camera
Input Blob Detector

Blob
Fusion

TUIO Message

Image data via IEEE 1394a

CopyCopy
Blob
ListBlob

TrackingTracking

Cameras expose
Chip readout
(duration unknown)

CopyCopyCopy
BlobBlobBlob
List

Background
Subtraction

Camera
Input Blob Detector

Blob
Fusion

TUIO Message

Image data via IEEE 1394a

CopyCopy
Blob
ListBlob

TrackingTracking

Cameras expose
Chip readout
(duration unknown)

CopyCopyCopy
BlobBlobBlob
List

Background
Subtraction

Camera
Input

Image data via IEEE 1394a

Cameras expose
Chip readout
(duration unknown) Cameras expose

Camera
Input Blob Detector

Blob
Fusion

TUIO Message

Image data via IEEE 1394a

CopyCopy
Blob
ListBlob

TrackingTracking

CopyCopyCopy
BlobBlobBlob
List

Background
SubtractionBlob Detector

Blob
Fusion

TUIO Message

CopyCopy
Blob
ListBlob

TrackingTracking

CopyCopyCopy
BlobBlobBlob
List

Render Image
Send
 State Render Image

Send
 State Render Image

Send
 State Render Image

Send
 StateRender Image

Send
 StateRender Image

Send
 StateRender Image

Send
 StateRender Image

Send
 StateRender Image

Send
 StateRender Image

Send
 State

Coordinate
Transform
CoordinateCoordinateCoordinateCoordinateCoordinate
TransformTransformTransformTransformTransform

CoordinateCoordinateCoordinateCoordinateCoordinate
TransformTransformTransformTransformTransformTransformTransform

TransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransform

CoordinateCoordinateCoordinate
TransformTransformTransformTransformTransform

TransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransform

CoordinateCoordinateCoordinate
TransformTransformTransformTransformTransform

TransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransformTransform

ImageImageImageImageImageImage
 Data Data Data
  via DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVI

ImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImage
 Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data
  via DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVI

Update
State

UpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdate
StateStateStateStateStateStateStateStateStateStateStateStateStateStateStateStateStateStateStateState

ImageImageImageImageImageImageImage
 Data Data Data
  via DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVI

ImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImage
 Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data
  via DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVI

Update
State

UpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdate
StateStateStateStateStateStateStateStateStateStateStateStateStateState

ImageImageImageImageImageImageImage
 Data Data Data
  via DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVI

ImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImage
 Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data
  via DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVI

Update
State

UpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdate
StateStateStateStateStateStateStateStateStateStateStateStateStateState

ImageImageImageImageImageImageImage
 Data Data Data
  via DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVI

ImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImage
 Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data
  via DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVI

Update
State

UpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdate
StateStateStateStateStateStateStateStateStateStateStateStateStateStateStateStateStateStateStateStateStateStateState

ImageImageImageImageImageImage
 Data Data Data
  via DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVI

ImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImage
 Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data
  via DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVI

Update
State

UpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdate
StateStateStateStateStateStateStateStateStateStateStateStateStateStateStateStateStateStateStateStateStateStateState

ImageImageImageImageImageImage
 Data Data Data
  via DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVI

ImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImage
 Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data
  via DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVI

Update
State

UpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdate
StateStateStateStateStateStateStateStateStateStateStateStateStateStateStateStateStateStateStateStateStateStateStateStateStateState

ImageImageImageImageImageImage
 Data Data Data
  via DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVI

ImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImage
 Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data
  via DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVI

Update
State

UpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdate
StateStateStateStateStateStateStateStateStateStateStateStateStateStateStateStateStateStateStateStateStateStateStateStateStateStateStateStateStateStateStateStateState

ImageImageImageImageImageImage
 Data Data Data
  via DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVI

ImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImage
 Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data
  via DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVI

Update
State

UpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdate
StateStateStateStateStateStateStateStateStateStateStateStateStateStateStateStateState

ImageImageImageImageImageImage
 Data Data Data
  via DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVI

ImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImage
 Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data
  via DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVI

Update
State

UpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdateUpdate
StateStateStateStateStateStateStateStateStateStateState

ImageImageImageImageImage
 Data Data Data
  via DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVI

ImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImage
 Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data
  via DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVIvia DVI

Update
State

UpdateUpdateUpdateUpdateUpdate
StateStateStateStateState

Camera
Input Blob Detector

Blob
Fusion

Render Image

TUIO Message

Send
 State

Image data via IEEE 1394a

Copy
Blob
ListBlob

Tracking

Cameras expose
Chip readout
(duration unknown)

Copy
Blob
List

Background
Subtraction

Coordinate
Transform
Coordinate
Transform

Image
 Data
  via DVI

Image
 Data
  via DVI

Update
State

Update
State

Figure 3.27: Idealized and simplified timingdiagramofmulti touch tracking and its relation to theHEyeWall timing. Processing
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3.2.7 Results and Future Work

Four main algorithmic differences make the development superior to
most other multi touch software:

• Most time consuming operations are multi threaded, with one
thread per camera.

• For image processing, only two modules, thus two passes are
used.

• Remapping or stitching of camera images is not necessary, as
lens distortion and stitching are only computed for the 2D
marker positions.

• The stable background subtraction can robustly deal with im-
perfect hardware and lighting conditions.

3.2.7.1 Future Improvements

Solving illumination issues with hardware changes and reducing syn-
chronization overhead of the multi threading are the most important
issues to address. With the lighting issues under control, a dynamic,
slowly updating background model may be used, if still necessary.

3.3 MISCELLANEOUS

3.3.1 Monocular 2D and 3DMarker Tracking

An early test with a simple marker tracking in an AR application was
performed, as shown below.

Figure 3.28: Own implementation of a 2DARmarker application. Marker
identification (left), corner detection (center) and compositing of a respec-
tively warped photo on the marker (right).

Later, a framework for tracking input devices with 6DoF from a sin-
gle camera was partially implemented. Previously learned natural
feature points on the object are especially interesting, as they do not
require artificial looking patterns on the object. With known object
coordinates for each feature, the 6DoF of the object relative to the
camera can be computed. This opens up the field of Augmented
Reality applications. We worked on such a system, with the goal of
being able to use a proxy object as an input device, only requiring a
webcam.
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Figure 3.29: Tangible Six Degrees of Freedom Input Device - system
overview. The system was never finished, as at the time no suitable nat-
ural feature tracking library was available. Instead, a different hardware
solution with an accelerometer was used (see section 2.3.5).

We realized the large amount of effort that is necessary for an own
implementation of natural feature point detection and eventually
solved the problem in a different way, as described in section 2.3.5.

3.3.2 Camera Based Automatic Display Calibration

A display setup consisting of multiple projectors usually needs cal-
ibration so that individual images fit well together. Especially if a
calibration needs to be performed often (e.g. in case of a mobile setup)
or is done by non-experts, an automatic geometric and colorimetric
calibration using a camera can be quick and accurate.
A survey of camera based calibration techniques for photometric
and geometric calibration is presented by Brown et al. in [BMY05].
Zhou et al. show continuously self calibrating projectors, using one
rigidly attached camera for each projector [ZWAY08]. Grundhöfer et
al. show real-time radiometric compensation [GB08]. A comprehen-
sive overview of projector-camera systems is given by Bimber et al.
in [BIWG08].
However, many of these approaches above rely on special hardware
and algorithms are often not very tolerant to changes in environment,
like illumination conditions. For a quick calibration, the camera needs
to be synchronized with the projector, requiring additional effort. The
dynamic range of the camera may not be sufficient, requiring an HDR
capture with multiple images at different exposures. As we rarely
need to recalibrate our display wall, the effort of setting up a camera
and implementing automatic calibration algorithms is not justified.
Instead, we perform the geometric calibration manually, as described
in section 4.2.3.1, [Ras00] and [LOUF06]. An example is the geometric
calibration for the DAVE. The non-linear distortions by the mirrors
and non-planar screens make an exact calibration with only a 4×4
matrix impossible. For a manual calibration, the operator can easily
decide which corner is more important and judge where errors have
less impact. This could also be done by software, again with more
effort. As a geometric calibration in the DAVE and HEyeWall are
rarely necessary, using the manual calibration that takes just a few
minutes is not a problem.
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3.3.3 3D Scanner

A different motivation leads to another use of a camera: 3D scan-
ning. Especially with the background of digitization and archiving
of 3D museum exhibition items, large amounts of objects need to be
scanned. This is only feasible with fully automatic scanning. Often,
laser scanners are used, with a camera capturing a laser line that is
moved over the object. We built a scanner with less hardware effort
based on silhouette carving, including a computer controlled turn
table. A fully automatic camera calibration was added. Other than
the turn table, only a web cam is necessary, leading to a low cost
hardware. While with that approach some concave shapes cannot
be recovered correctly, always a water tight model results and per
vertex colors are obtained from the webcam images. As this work is a
student project from  and rather dated, the basic steps are only
briefly covered.

Figure 3.30: 3D model (right) obtained with our low cost 3D scanner (top
left). The camera images and automatic segmentation results are shown
in the left center. The camera frustums relative to the object together with
the result are visible in the screen capture at the bottom left.

3.3.3.1 Automatic Camera Calibration for the 3D Scanner

The automatic calibration uses two calibration patterns on perpen-
dicular planes. To automatically find the calibration points in the
camera image, a series of image processing filters is applied (see il-
lustration below). The camera parameters are obtained using Tsai’s
method [Tsa92]. Then the turn table rotates by about 15 degrees and
the process is repeated, in order to compute the rotation axis. As long
as the turntable and camera are not moved, several objects can be
scanned with the same calibration.
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Figure 3.31: Image processing for automatic calibration. The image of the
calibration object is converted to greyscale, binarized, eroded and labeled.
The centers of each label are connected with a minimum spanning tree,
removing its longest edge splits the two sides. The different number of
markers identify the side. Using the angle of the convex hull of each set
of points, the corners are found and the points can finally be registered.
After a rotation, a second photo is processed to automatically compute the
rotation axis of the turntable.

3.3.3.2 Scanning Process

The object is put on the turntable and photos are taken for a speci-
fied number of views. A watershed segmentation in the HSV color
space is used to get a binary segmentation of the object. In a voxel
volume, the visibility is computed for each voxel by backprojection
into each segmented camera image. Afterwards the marching cubes
algorithm [LC87] is used. It is modified to obtain a water tight mesh.
Each vertex is backprojected in the camera images to obtain color
information.
For some objects it is useful obtain views from different angles. An
additional cameramay be used, or the object may be scanned a second
time lying on the side. However, experiments with the latter approach
were not successful as the merging of two scans had to be estimated
by the user without any visualization, which is not precise enough.
The software was made freely available in the internet. Considering
the poor image quality of the webcam, we obtained good results. For
more details, please refer to [LH03].

Possible Improvements. Image based reconstruction has progressed
since. The same hardware and images can be used for a higher qual-
ity reconstruction and without the need of calibration images. The
Arc3D[CCD∗08] webservice or the PhotoFly project by Autodesk allow
such reconstructions.
A research project called KinectFusion [INK∗11] additionally employs
the kinect depth sensor to acquire even more reliable geometry in
real time.
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4
Output: Image Rendering

For rendering 3D graphics in a Virtual Environment, additional
requirements arise compared to common non-immersive setups.
Many of them can be addressed easily, provided that the source

code of the application is available. The Davelib is described in this
chapter, a lean and minimalistic, yet fully functional framework to
develop new programs and to easily adapt existing programs. Also,
the necessary extensions for a novel display concept are presented,
a tiled seamless back projection display, the Frequency Split Display
realized with the HEyeWall Graz.
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4.1 RELATEDWORK

4.1.1 VR Frameworks and Tools

The large variety of VR setups and hardware is described in chapter 2.
Unfortunately, no VR operating system exists that could run an ap-
plication in any VE, given the appropriate drivers for the hardware.
No commonly accepted interfaces exist to specify display setups, in-
put methods, or how communication of a group of computers and
devices is realized.
Instead, individual solutions seem to be developed for almost each
setup. A number of VR frameworks exist that try to facilitate develop-
ment by providing standard functionality and allow a configuration
of the specific setup. This works well for displays, and for head track-
ing to some extend, but other input devices are more diverse and
must be adapted for each setup.
But even if a better framework or configuration standardwas available
than the currently used one, it often means a lot of effort to switch to
the new system. Only a significant improvement justifies this step.
The ideal situation is that a properly written application can be dis-
tributed as executable and can be run in any VE without further
modifications.

4.1.1.1 Call Interception on Graphics Driver Level

A good idea to transfer any 3D content in a VE without modify-
ing the executable of an OpenGL application is to intercept the API
calls. Chromium[HHN∗02] achieves this by providing a fake OpenGL
driver that handles the API calls before forwarding them to the real
OpenGL driver of the graphics card. In that way, all OpenGL com-
mands can be distributed over the network to other machines in a
cluster and can be executed there as well. For the correct view on
each screen, the projection matrix is modified accordingly. In addi-
tion, additional stream filters may be applied in order to modify the
rendering style. While this seems to be a universal solution at first
sight, a number of possible problems exist. Most importantly, view
frustum culling is used in many interesting applications. Objects that
are not visible in the original camera frustum are not even send to the
OpenGL driver. When running such an application in a CAVE, many
objects that should be displayed on the side and floor screens will be
missing. However, it should work well with many applications on 2D
tiled displays walls and performs a lot better than first rendering one
large resolution image that is then split up and distributed via net-
work. WireGL [HEB∗01] is a similar predecessor with the intention
to compute small tiles of an image in a cluster and reassemble them
on a single machine. This may result in a very uneven load balance.
To better distribute the work load, another method is to distribute
the rendering on multiple graphics cards by splitting up the content.
Subsequently, the resulting framebuffers are merged.
A related method is used by the NVIDIA 3D Vision stereo driver, es-
pecially targeted at games. The driver takes care of rendering two
images with a different stereo offset by automatically duplicating
render targets, attaching an additional footer to each vertex shader
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and by duplicating render calls. The user can adjust eye separation
and convergence, as the screen size and distance are unknown to the
driver. To speed up rendering, not the whole rendering is duplicated.
Instead, a heuristic is used, trying avoid computing the same inter-
mediate results twice [McD10]. As an example, shadow maps are
independent of the left or right eye and must be only rendered once.
Again, software usually has to be adapted (see section 4.2.5.1) and
the driver configured for each application. A special issue arises for
the calculation of a 3D position for the respective fragment position
during deferred shading that must be addressed [NVI11]. The 3D
Vision requires NVIDIA graphics cards, so called 3D ready displays
and Windows PCs.

4.1.1.2 VR Frameworks

ManyVR frameworks exist and it seems thatmost VR research groups
maintain their own code. This is probably due to the few and very
different hardware setups and the required flexibility. Also, a growing
code base and experience with the own system means more effort to
switch to a new system.
VR Juggler is a comprehensive open source suite including libraries
for device management, math, threads, network, sound, navigation
and configuration functions. It is very powerful but also rather com-
plex and takes some time to get started. It is compatible with several
options for rendering, such as OpenGL, DirectX, OpenSG, OpenScene-
Graph and OpenGL PerformerT M .
Scene graphs are useful for a hierarchical organization of the spatial
content, allowing object transformation andmeta data information for
the nodes. They often provide useful methods, e.g. a ray intersection
request can deliver the first object or node that is hit by the ray.
OpenSG is an open source scene graph system with a rich set of func-
tionality. One main feature is its integrated network synchronization
for clusters. Building on OpenSG, instantreality provides a high level
access using the 3D content file format X3D and scripting to quickly
develop VR applications. It is closed source but freely available with
small limitations. OpenSceneGraph is another scene graph system
similar to OpenSG. For many of our own applications we use both
OpenSG and instantreality.
Manymore VR and AR frameworks exist that run onWindows, Linux
and often more platforms. They can run on clusters and in CAVEs
and usually support a range of specific input devices. Many of them
are free or even open source. Many support an interface to a scripting
language. Even though the main features are often very similar, the
software architecture and support by tool or libraries can be quite
different.
A lot of these frameworks try to provide a comprehensive set of tools
and functions, intended to develop new applications. However an
integration into a existing 3D applications is often not easy. The Cross-
Platform Cluster Graphics Library (CGLX) is rather lean and similar
to our Davelib: the same application runs on each computer and is
synchronized via application state events. It is used for large tiled
displays and does not support other display geometries. The interface
is similar to GLUT.
A few further examples of free frameworks are OpenGL Performer
by Silicon Graphics International (SGI), DIVERSE by Virginia Tech,
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OpenRM by the R3vis Corporation, AvangoT M by Fraunhofer, Func-
tional Reactive Virtual Reality (FRVR) by the University of Hamburg,
the Virtual Reality Virtual Rendering System (VR2S) by the University
of Münster, Virtual Reality for Scientific Technical Applications (VISTA)
[SGvR∗03], [KBG09] by RWTH Aachen, Equalizer by the University
of Zurich, the Virtual Rendering System (VRS) by the University of
Potsdam, Maverik by the University of Manchester, Studierstube by
Graz University of Technology or Syzygy by the University of Illinois,
to name a few.
Examples of commercial frameworks are 3DVIA Virtools by Dassault
Systems, the Visual Decision Platform (VDP) by IC.IDO, products by
Mechdyne such as the Cavelib, OpenInventor R©, COIN by Kongsberg
Oil & Gas Technologies or COVISE by Visenso.
The lists are by no means comprehensive and the large number shows
that there is no single perfect solution. While a few frameworks
seem not to be maintained any more, new frameworks and extensions
are still developed, like a VR framework specialized for molecular
simulations [FDGB08] or VR JuggLua [PV11], a combination of VR
Juggler, Lua and OpenSceneGraph.

4.1.1.3 Libraries in the Context of VR and AR.

Some libraries exist to solve a specific problem relevant to the con-
text of AR and VR. The ARToolkit enables 6DoF marker detection
especially designed for AR applications. Reitmayr et al. present Open-
Tracker [RS01], [RS05], an interface developed to provide a unified
access to tracking systems and to take care of different coordinate sys-
tems. This can be modeled with a data flow graph defined in an XML
file. It was extended to support more input modalities like joystick
buttons, a keyboard or a mouse. Such input events can be remapped
by filters. The Virtual-Reality Peripheral Network (VRPN) [THS∗01]
provides access to remote devices via the network.
Many applications use scripting functionality. Lua is a small and fast
cross platform scripting language that is a common choice, especially
for games.

4.1.1.4 Game Engines.

State of the art game engines are powerful frameworks for realistic
rendering of large models. They are often specialized to terrains and
sophisticated tools exist to model levels for a game that are rich of
visual features and efficient to render. Advanced graphics effects
are implemented, mostly trying to approximate global illumination.
Physic engines are integrated for interaction with the objects. Net-
work support for multiple players is a common feature. High quality
content is often available from commercial games or the community.
OGRE is an open source engine. More advanced are two important
commercial engines, the Unreal Engine and the CryEngine. Both
of them can be used for free in an educational context and allow
modification by plugins and can likely be ported to a CAVE.
In fact, we have done that with the datedQuake III Arena engine when
the source code was released (see Figure 6.3.3.1).
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4.1.1.5 Desktop and Office Applications

For desktop and office applications in VR setups and distributed
displays, conventional 2D windows are often displayed as textured
quadrangles or flat boxes within 3D space. To be able to use all
applications as they are available at a desktop setup, and to be able
to use geometric calibration and blending of projector images, it is
desirable to use a 3D compositor to display the windows. The Compiz
compositing manager for Linux is such an example. Yet another
approach for cluster rendering is to use a large desktop window and
distribute the image data over the network so that clients can render
it as a texture. It is often used for 2D desktop applications on a tiled
display setup, as presented e.g. in our publication [USOF09].
The deskotheque project aims at providing both a personal workspace
as well as a large display surface in order to support collabora-
tion [PWS09].

4.1.2 Display Calibration

Often, multiple displays working together require calibration in order
to avoid artifacts. The geometric calibration is used to correct the
position of the screen content. The colorimetric calibration adapts the
color range of the displays. The photometric or radiometric calibration is
used to adapt bright and dark levels of the displays andmay implicitly
contain a colorimetric calibration.

4.1.2.1 Edge Blending for Overlapping Projections

Hard edge blending Soft edge blending
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Figure 4.1: The intensities I of two projectors, across a transition along
x are shown. Edge blending options: hard (left), soft with piecewise lin-
ear intensities (center), soft with smooth intensities (right). The top row
shows that in all cases, both intensities sumup to a constant (black line) as
intended. However, when the projectors are slightly misaligned (2nd and
3rd row, or when projector intensities are different (4th row), hard edge
blending leads to visible artifacts.

As an exact mechanical align-
ment of projectors is often imprac-
tical. Adjacent projected images
can be setup to slightly overlap.
In the overlapping area the pro-
jected intensities add up. This
can be avoided with hardware
blendmasks that physically block
the light or software blend masks
that attenuate the image content
accordingly. The latter approach
has the disadvantage, that the
projector dark levels cannot be
attenuated, resulting often visi-
ble artifacts in areas where multi-
ple images overlap, such as inner
corners in a 2D array setup (see
the right image in Figure 4.27 for
such an example). This can be
only compensated by raising the
common dark level, reducing dy-
namic range and contrast.
A sharp transition of one image to the next is called hard edge blending,
as illustrated in the left column of the figure above. It is hardly used,
as small misalignments lead to visible artifacts. A notable exception
is the HEyeWall at IGD, Darmstadt, where physical blends are lo-
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cated close to the screen [KRK03]. However, color non-uniformity of
projectors leads to visible transitions, often even with a colorimetric
calibration.
Another important reason for overlapping projector images is to
achieve a smoother transition from one image to the next. A smooth
blending is used in that case, called soft edge blending, as illustrated
in the center and right columns of the figure above. A larger overlap
leads to a less visible transition but decreases the overall usable bright-
ness and resolution. A physical mask close to the projector lens casts
its shadow out of focus, resulting in a soft transition. Metal stripes
held by magnets can be used as masks, allowing an easy adjustment.
Software attenuation masks can also be adjusted manually. However,
especially for a larger number of projectors, manual adjustments are
impractical and methods are used that automatically compute the
masks.

Automatic Computation of Soft Edge Masks Raskar et al. show
automatic geometric calibration using a camera per projector [RBY∗99].
This method leads to small artifacts in the corners of the blend masks
that are discussed in more detail in section 4.2.3.4.
Harville et al. present geometric and photometric calibration for a
curved screen with special attention on its use in practice [HCS∗06].
They also address the problem of computing a smooth blend mask
in a very similar way to one of our methods. Their idea is to use a
weighting function with a continuous first-order derivative inside
the projected region. However, they overlook the discontinuity at the
region border. Their approach is shown in the center column of the
figure above, whereas we further modified the weighting functions
to achieve the results shown in the right column (see section 4.2.3.4
and our publication [LF11b] for more details).
The larger the overlap of the projectors, the less visible is the transition.
But a larger overlap also results in less bright and lower resolution
projection. To address this problem, a super resolution projection
approach existswhere all projector images are superimposed [DVC07].
This method needs very accurate information about the pixel position
of each projector. Small mechanical misalignment requires a new
calibration.

4.1.2.2 Geometric, Photometric and Colorimetric Calibration

For curved screens, such as cylindrical screens or domes, non-linearly
warped projector images are required. This can be achieved in a
vertex shader [BR04], but this is just an approximation which only
works well if the objects in image space are tesselated high enough.
A different, more common approach uses two passes for render-
ing [RWF98]. First, the image is rendered to a frame buffer object
instead of the frame buffer itself. The second pass draws an appro-
priately deformed mesh, textured with the frame buffer object, to the
frame buffer. This requires additional memory and processing time
and can lead to resampling artifacts. However, all image content can
be handled in a generic way without further modifications.
Smooth projection surfaces can be recovered with a camera, recording
and processing calibration images [RWF98]. To achieve a correct
geometric registration even for non-smooth surfaces, Bimber et al. use
a look up for each pixel [BIWG08].
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Majumder et al. show that photometric and colorimetric calibration
can be achieved very well with the help of a camera [MS04]. However,
the overall dynamic range of the display is greatly reduced. Later,
they show that this reduction can partially avoided by taking per-
ceptual thresholds into account [MS05b]. They allow non-uniform
black and white levels with spatially smooth functions. Bimber et al.
demonstrate that even very structured diffuse surfaces can be used to
display arbitrary images while hiding the original structure to a high
degree [BIWG08].
A serious issue especially of rear projection screens is a view depen-
dent transmission, or a view dependent reflection for front projection
screens. This effect is especially pronounced for high gain screens.
But even the very low gain rear projection screens with a gain factor
of 0.8 show wide but prominent hot spots. When using a calibration
with a camera, the calibrated display will only look good from the
camera position.
Bimber et al. compensate indirect scattering between projection sur-
faces [BGZ∗06], e.g. of a CAVE. However, this effect has rather low
frequencies even across screen borders and is less important.
Brightness and color temperature of a projector lamp change over
its lifetime. With LCD projectors the situation is even worse, as also
the LC modulator changes color. Especially in a projector array, the
effects can become annoyingly visible. As an example, the first version
of the HEyeWall at IGD, Darmstadt used LCD projectors with two
projectors per tile for a stereo setup [KRK03] using spectral filters by
Infitec. These filters sharply block several parts of the spectrum and
therefore make the situation even worse. After a few years lifetime
the display of a single color resulted in very visible color differences.
A relatively recent overview of projector camera systems is given in
[BIWG08].

Semi-Automatic Calibration. Although many automatic calibra-
tion methods were presented, it does not justify the overhead for our
setups and purposes. Thus, we use a manual registration of the cor-
ners to compute a geometric calibration with a 4×4 calibrationmatrix
as described in section 4.2.3.1 and in [LOUF06]. It is easy to set up,
does not require additional hardware and is flexible to use. Also no
automatic photometric calibration is used. Instead, the lamp power
settings are used in the DAVE and the intensity transfer functions for
the HEyeWall projectors are approximated by brightness and gamma
values that are adjusted with an interactive feedback.

4.1.3 Depth Perception

A combination of different visual effects leads to a human perception
of depth. Most important are occlusion, motion parallax, perspec-
tive, stereoscopic viewing and accommodation clues. Objects in the
distance have less contrast due to haze and lighting and shadows
help as well. All these effects should be reproduced to achieve visual
immersion.

Stereo Vision. As the eye positions are necessary for setting up the
view and only head tracking is available in the DAVE, we estimate
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the eye positions and use an interpupillary distance of 6.3cm, the
mean value of adults according to [Dod04]. As children are frequent
visitors, a user dependent configuration was considered to set the
distance accordingly. However, a quick test in an appartment model
in the DAVE, showed a low influence for realistic results in the DAVE,
even with a large error.About 5% to 10 % of people have limited or
no stereoscopic abilities, the literature is vage about these numbers.
Accommodation is correctly handled with help of the eye positions
and respective display. Vergence however is not handled correctly in
the DAVE (see section 2.1.2.1, a major cause of discomfort [HGAB08].
Note that stereoscopic vision with projective geometry on planar
screens is correctly achieved with asymmetric frustums, opposed to
toeing in the virtual cameras which rotates the projection plane and
leads to unwanted vertical parallax.

Occlusions. Using standard real-time rendering techniques, occlu-
sions are handled with the help of a depth buffer. However, e.g. in the
DAVE, objects that should appear in front of the body will incorrectly
be occluded by the body.

Motion Parallax. Motion parallax is as important as stereo vision,
especially for close objects. When moving the head relative to a static
scene, objects further away appear to move slower due to perspective.
This effect can bewell handled by head tracking but some delay occurs
due to the latency of tracking system, rendering and display. Only
light field or true volumetric displays do not suffer from such a delay.

Haze, Lighting and Shadows. Haze can be realized using the fixed
function fog by OpenGL. As this is computed using the distance along
a single vector, the visibility distance increases to infinity perpendic-
ular to the viewing direction. Instead, the euclidean distance should
be used instead with an own shader implementation. Most lighting
and Shadow algorithms can be used without modification. Note
that screen space based effects like screen space ambient occlusion or
blooming may lead to visible edges at the screen borders.

Perceptual Deviations Loomis et al. have carried out a large num-
ber of experiments to study perception mismatches. Examples are
that in their setups, a walked distance in VR is underestimated [LK03].
Similar studies showed that head rotation and scale are also affected
in the experiments [SBJ∗10]. While estimated values are also wrongly
estimated in the test condition in reality, the VR condition shows a
clear offset in most experiments. The reasons for these effects are
unclear. Studies with HMDs showed, that the field of view and inter-
pupilary distances that are perceived as natural differ from the correct
values [BS11]. The results of such studies may help to compensate for
such effects e.g. by slightly scaling the 3D model.
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4.2 DAVELIB: A VR FRAMEWORK

4.2.1 Motivation and Goals

Simple Porting of Existing Applications to the DAVE. Porting an
existing 3D application to the DAVE can be very simple. To demon-
strate the lean concept of the Davelib, a minimal code example for a
GLUT orOpenGLEAN program is shown below. The same program is
executed on the server aswell as the clients, eachwith different param-
eters. The additional lines that are necessary to port the application
to the DAVE are highlighted in red.

1 #include <GL/openglean.h>
2 #include "Dave.h"
3 DAVE::Dave dave;
4

5 struct UserSyncStruct { // synchronize to clients
6 float cameraPosition[3];
7 };
8

9 void display() {
10 glClear(GL_COLOR_BUFFER_BIT |
11 GL_DEPTH_BUFFER_BIT);
12 dave.setProjectionMatrix();
13 glLoadIdentity() ;
14

15 UserSyncStruct* usd = (UserSyncStruct*) dave.getSyncBufferUserDataPtr();
16 glTranslatefv(usd->cameraPosition);
17 glutSolidTeapot(1.0);
18 glutSwapBuffers();
19 }
20

21 void update() {
22 // handle input devices (pseudo code)
23 if (joystickButton [0]. isPressed()) cameraPosition[2] += 0.1;
24

25 // send/receive UserSyncStruct data
26 dave.update();
27

28 glutPostRedisplay();
29 }
30

31 int main(int argc, char∗ argv []) {
32 dave.parseCmdLine(argc, argv);
33 dave.init(sizeof(UserSyncStruct));
34

35 glutInit (&argc, argv);
36 glutInitDisplayMode(GLUT_DOUBLE |
37 GLUT_RGB | GLUT_DEPTH);
38 glutCreateWindow("Davelib 4");
39 // ignore Davelib settings and always go into fullscreen
40 glutFullScreen() ;
41 glutSetCursor(GLUT_CURSOR_NONE);
42 glutIdleFunc(update);
43 glutDisplayFunc(display);
44 glutMainLoop();
45 return 0;
46 }

Figure 4.2: A minimal program with sample modifications for a CAVE setup (in red) using the Davelib.
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The Davelib has evolved in the past 9 years of usage and is employed
mainly in our DAVE. The main difference to many other VR frame-
works is the lean design especially suited to be integrated in existing
3D applications. With the Davelib, only few function calls are neces-
sary. Little time is required to learn how to use it and only one to two
external dependencies exist (OpenGL and optionally Lua), simplify-
ing integration in existing applications. Especially, the few external
libraries help to simplify maintenance for developers of Davelib ap-
plications, as compiler versions and subsequently compatible library
versions change over the years and the code using the libraries may
need adaption to keep working. It is an open source cross platform
(only Windows and Linux are tested) C++ library for OpenGL appli-
cations, but it should easily be portable to Java or modified for the use
with DirectX. A wide range of setups is supported via configuration
files and Lua scripting. This means that the application itself does
not need to be recompiled and the same executable can be used. The
last and only partially implemented step to fulfill this goal is the IO
device library, a part of the Davelib that was developed primarily to
support input devices that are setup specific, but it can also be used
to control output devices.
The Davelib was initially written to provide the minimal necessary
set of functions to run an application in our DAVE. It does not provide
support for a GUI, sound, physics simulation, scene graphs, haptics,
etc. but rather coexists to libraries written for these purposes.
The Davelib is a light weight set of basic functions that are necessary
for OpenGL applications to work in a VR environment. While the
focus stays on graphics functions for correct viewing, IO device script-
ing has been added for an easy adaption to a wide range of setups,
including CAVE like setups, tiled displays and just normal PCs.

DaveConfig

DaveNetwork

DaveProjection
DaveWindowManager

DaveTracking

DaveIODevice
Config file

Command line parameters
Environment variables

Tracking

Mouse

Keyboard
Joystick

Sound

System control
via PDA and webserver

Client app

Master app

Status 

Lua
script

Client app Client app

DaveWindowManager

Figure 4.3: A simplified overview showing an example setup with the involved parts of the Davelib.
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4.2.2 Davelib Core Functions

The Davelib consists of a carefully designed set of functions. There are
no requirements or dependencies to use any of the Davelib functions,
but the more are implemented, the more setups are supported. First,
the basic components are described that are likely to be necessary for
most VR setups. Afterwards, additional extensions are presented.

4.2.2.1 Screen Geometry and ViewMatrix Setup

The central technical aspect of a VE is the different view of the scene
for each individual screen. In a conventional program for desktop
setups, the OpenGL projection matrix is used to set up a perspective
view looking into the virtual world. With the Davelib this matrix can
be replaced by another matrix

POpenGL = P∗R∗T (4.2.1)

in order to give a correct view for a stereoscopic head tracked VR
display. The OpenGL model view matrix can be used as normally,
e.g. to change the camera position and orientation in the 3D scene
and transform the specified vertices to local coordinate systems. An
orthogonal view is currently not supported, as this only makes sense
on 2D displays. When writing an application specific for a 2D tiled
display, this may be a useful future extension which can easily be
added.

Aw

Bw

Cw

Ew

Fw Xs

Zs

Ys

Xw

Zw

Yw

rs

ls

ts

bs

ds

Figure 4.4: The asymmetric projective frustum for fixed screens and head
tracking. Aw,Bw,Cw are corners of the rectangular screen and Ew is the eye
position specified in world coordinates.
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Static Screens. For projection screens, the camera is set up with a
perspective frustum given by

P =



2ds
rs+ls 0 rs−ls

rs+ls 0

0 2ds
ts+bs

ts−bs
ts+bs

0

0 0
znear+z f ar
znear−z f ar

2znearz f ar
znear−z f ar

0 0 −1 0

 (4.2.2)

Note that in general the frustum for screens in a VE is asymmet-
ric and depends on the eye positions that are estimated from head
tracking [CNSD93].
The frustum may also be rotated to account for the rotation of the
screen, e.g. for the side walls of a CAVE, which is realized with the
rotation matrix

R =


0

~Xs ~Ys ~Ys 0
0

0 0 0 1

 (4.2.3)

Note that this rotation is independent of the rotation of the camera
or navigation. Finally, a translation is applied with the negative eye
position values.

T =

 I − ~Ew

0 0 0 1

 (4.2.4)

with the 3×3 identity matrix I.
To allow a simple configuration, only three corners Aw,Bw,Cw of the
rectangular screen in the world coordinate system ~Xw, ~Yw, ~Zw and the
distances of the near and far clipping planes znear and z f ar must be
specified. From these values, the necessary parameters can be com-
puted:

~Xs = ‖Aw−Bw‖
~Ys = ‖Cw−Bw‖
~Zs = Aw×Bw

rs =
−−−→
EwAw · ~Xs

T

ls =
−−−→
EwBw · ~Xs

T

ts =
−−−→
EwCw ·~Ys

T

bs =
−−−→
EwBw ·~Ys

T

ds =
−−−→
BwEw) · ~Zs

T

The assumption for these equations is a rectangular screen, but only
a part of it can be used for a planar screen with an arbitrarily shaped
border, like a circle.

Head Mounted Display. For HMDs, P is set to a symmetric frus-
tum:

P =


1
ls 0 0 0

0 1
bs

0 0

0 0
znear+z f ar
znear−z f ar

2znearz f ar
znear−z f ar

0 0 −1 0

 (4.2.6)
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with

ls = rs = tan
(

απ

360

)
bs = ts =

ls
a

where α is the horizontal field of view and a the screen aspect ratio.
The rotation matrix R is directly set to the orientation matrix from
head tracking. Like for static screens, afterwards a translation is
applied as in Equation 4.2.4.

4.2.2.2 Synchronization Across Multiple Computers

As mentioned above, there are different approaches to drive multiple
displays. One approach is to compute the images on a single PC that
either directly outputs them, potentially by using multiple graphics
cards, or sends the images to other PCs via network. This method
does not result in a high performance and in the former case does not
scale with the number of displays. For a high rendering performance,
a better approach is to send only rendering commands or synchro-
nization information over the network to distribute the rendering on
a cluster, both reducing network transfer and parallelizing the ren-
dering. The latter approach is used by the Davelib, with an instance
of the same executable running on each PC.
An example is a user flying through a virtual world. Position and
orientation of the navigation are copied to a synchronization buffer in
the master application. After the network transfer it is read from the
buffer in the client application. The Davelib internally also transmits
the eye positions of a single head tracked user. Support for multiple
head tracked users can be added easily.
The Davelib provides two types of network transfers. One is intended
for the mentioned information like status updates, it is sent via UDP,
preferably on a multicast address. It is fast but unreliable and only the
last message is kept in the case that multiple messages are received
at a time. For the multicast case, the clients only need to know the
address of the server. The other type of network message is used for
events, implemented with TCP for a reliable connection.
Currently, rendering is not explicitly synchronized. While applica-
tions can be written to synchronize the buffer swapping, waiting
until image renderings on all other clients are complete, it is hard not
to waste time or introduce latency from synchronization overhead.
Also, especially in a CAVE, the workload and framerate of different
machines may greatly differ, depending on object visibility on the
different screens. In our VR setups we currently only use software
that renders with high framerates. A fast rendering is very important
with head tracking, as head motion otherwise leads to disturbing
jumping of the content. With the high framerates, we do not notice
problemswithout explicit synchronization. However, the latencymay
increase, as the rendering of a frame is not instantly started when new
information is available, see Figure 3.8 for a graphical representation
of the timings and latency.

4.2.2.3 Configuration

A Davelib application can render on a wide range of setups without
adapting the program. A simple configuration file allows to use the
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same executable, e.g. on the DAVE, the HEyewall or a normal desktop
PC. The configuration mainly contains the configuration for each
display, like the position of the four display corners in space. Further
parameters like like network addresses or file names of calibration
matrix or blend mask image can be specified, too.
The default configuration file name can be read from an environment
variable, so on a configured PC, an application can be just started and
automatically uses the correct parameters. Command line param-
eters can also be used to temporarily define or override individual
settings of the configuration. String pairs of key and value are used,
with helper functions for reading integer or double values. We also
implemented a hierarchical definition. As an example, a value that
should be the same for all computers can omit the machine name,
acting as a default in case it is not defined in that deeper level of the
hierarchy.
Unfortunately, there are no commonly accepted cross framework stan-
dards for setup configuration, e.g. display configuration or projector
calibration. If for the first time aDavelib program should run on a new
setup like a CAVE that uses display calibration, either the calibration
has to be redone or an existing calibration from a different framework
has to be transferred. Equally, the configuration or calibration may
be automatically translated to enable usage of the same information
in other software packages. As an example, after calibration of the
DAVE, the configuration for Davelib applications are generated as
well as the engine definition for instantreality.

1 multicastAddress = 224.245.132.123
2 multicastPort = 33001
3

4 // optical tracking
5 trackingServer.address = 10.52.10.1
6 trackingServer.port = 33002
7

8 /////// window on master ///////
9 master.windowPosX = 10

10 master.windowPosY = 10
11 master.windowWidth = 400
12 master.windowHeight = 300
13 master.hmdHFov = 60
14

15 /////// LEFT WALL ///////
16 dave1.lowerLeftX = −1.65
17 dave1.lowerLeftY = −1.65
18 dave1.lowerLeftZ = 0
19 dave1.lowerRightX = −1.65
20 dave1.lowerRightY = 1.65
21 dave1.lowerRightZ = 0
22 dave1.upperLeftX = −1.65
23 dave1.upperLeftY = −1.65
24 dave1.upperLeftZ = 2.47
25 dave1.windowMode = FULLSCREEN
26 dave1.cameraStereoOffset = LEFT_EYE
27 dave1.calibMatrix = config/LEFT.cal
28

29 dave2.lowerLeftX = −1.65
30 dave2.lowerLeftY = −1.65
31 dave2.lowerLeftZ = 0
32 ...

Figure 4.5: An excerpt of the DAVE configuration file for programs using
the Davelib. To describe the properties for a screen, only a few lines are
necessary.
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4.2.2.4 Window management

The window manager has the task to open one or more windowed or
fullscreen OpenGL contexts, as specified by the configuration data.
Since this operation largely depends on the way the windows are
opened, it has to be implemented for each framework. We mainly
use OpenGLEAN as a GLUT replacement. We slightly modified it to
support quadbuffer contexts for the clonemode with quadro graphics
cards and borderless windows for e.g. a side-by-side configuration. A
less complete window manager for Simple DirectMedia Layer (SDL)
is also implemented.
Another example is an external software opening a full screenwindow
with native system calls. Not touching this part of the code, the values
of the window configuration are ignored, reducing its portability to
other setups. It runs correctly in the DAVE where a single fullscreen
window is used for each PC, but does not work on the HEyeWall
without further changes.
Often, 3D applications are written to render only to a single win-
dow. On a setup with multiple displays connected to a computer, the
application can be started several times with different parameters.
However, it is more memory conserving and more efficient to render
to multiple contexts from the same application. As an example, a
large 3D model only has to be only once loaded from disk and stored
to main memory. This may require some more effort to port existing
applications, since some initializations like texture and shader defini-
tions need to be done per window, keeping in mind that the windows
may be rendered by different graphics cards.
When rendering of multiple windows is done on the same card, tex-
tures and vertex buffers can be reused and some intermediate results
like shadow maps must only be computed once per frame. It may
make sense to use these advantages and start an instance for each
graphics card.

4.2.3 Davelib Extensions

Useful add ons are described below, some of them require additional
effort during implementation. We suggest to also support themwithin
a Davelib program for a flexible usage on many different setups.

4.2.3.1 Linear Geometric Projector Calibration

Figure 4.6: The projection slightly
overlaps the screen area visible
from the inside of the DAVE, indi-
cated by a red dotted line. The cur-
rent calibration is also visualized
by the system background image,
that is recomputed accordingly af-
ter each calibration.

To avoid a tedious and time consuming mechanical calibration of the
projectors, they can be only roughly aligned with the image slightly
overlapping the screen. An additional calibration is applied dur-
ing rendering to predistort the images so that the image content is
geometrically aligned as if the projector was aligned perfectly.
Raskar et al. propose a linear projector calibration [Ras00] by modify-
ing the OpenGL projection matrix. We independently developed an
almost identical solution that is used for all applications in the DAVE.
The modification is realized by a simple matrix multiplication, so that
Equation 4.2.1 extends to

POpenGL =C ∗P∗R

Assuming perfect projector optics and a planar projection surface,
a simple homography is sufficient to correct each of the 3D vertex
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positions. As straight lines stay straight after transformation, all 3D
content is corrected in this way. For at least four reference points qsi
the user specifies corrected points rsi . The calibration matrix

C =


a b 0 d
e f 0 h
i j 1 0
m n 0 1


is calculated such that all qsi will be projected as close as possible to the
target positions rsi , minimizing the sum of the squared distances. This
matrix is a combination of thematrices shown in the figure on the side.
A semi-automatic calibration can be achieved by projecting a mouse
cursor on the screen and clicking on physical reference positions like
the corners of the target screen. To get precise physical locations
of the reference points we use the corners of the projection. As a
normal mouse cursor is not visible at each corner and only allows
pixel precise acquisition, multiple lines at different angles are used for
each corner. Their intersection defines the corner position accurately.
The lines can bemovedwith a wireless joystick fromwithin the DAVE.
We have improved this calibration so that it is possible to interactively
move a corner and instantly see the calibration result, also showing
markers on each edge that should match to the respective markers on
a neighboring screen.

Figure 4.7: The 4× 4 matrix trans-
formations showswhichmatrix val-
uesmust be changed in order to cor-
rect the respective effects.

The values a, b, d, e, f , h, m and n are numerically optimized with
the steepest descent algorithm so that the sum of squared distances
from projected points to their target location is minimal. Unfortu-
nately, to correct keystoning or trapezoid distortion, the parameters
for perspective division are influenced, leading to different depth
results after perspective division and thus most notably different and
skew clipping planes. We partially counteract possible resulting ar-
tifacts by setting the values i and j to m and n respectively, so that
the near clipping plane stays the same but the far clipping plane is
stronger distorted. This is motivated by the typical DAVE applica-
tions with close objects where clipping at the near plane occurs and
leads to otherwise inconsistent clipping at screen borders. Raskar et
al. address this problem differently [Ras00]. They set i = j = 0 and
k = 1−|m|− |n| and thus extend the frustum to include the complete
original frustum. However, the resolution of the depth buffer may
not be used very well in that case, and front clipping planes are skew.

Figure 4.8: Software calibration of projectors with minimal overhead.
Left: before calibration, right: after calibration.

The necessary values are stored in an ASCII file for each screen con-
taining the 16 values. In OpenSG the same file is read, in instantreality
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these values are stored in aMatrixViewModifier in the engine defini-
tion, so that currently the engine definition must be rebuilt. This is
done automatically after each calibration.

Discussion. It is helpful to place the projectors in a way to keep
the changes by the calibration small, especially to avoid keystoning
and thus reduce the potential problems with the depth calculations
and clipping. Note that bitmap operations are not transformed by
the OpenGL projection matrix and are not handled correctly. Some
applications may draw a head up display in that way. Also, screen
space fragment shaders that work with information from neighbor-
ing pixels may lead to slightly different results. Unfortunately, our
mirrors and rear projection screens are not exactly planar. When the
calibration is done to fit at the corners, other parts may be off by a
few pixels. This is visible especially at the edges. With the manual
calibration, this can be partially compensated.
The main advantages of this method are obvious: Only minimal code
changes are necessary to apply the calibration and during rendering,
no extra computation time is required. For more details, please refer
to our publication [LOUF06]. If any of the mentioned issues are a
problem in practice, the following approach can be used.

4.2.3.2 Non-Linear Geometric Projector Calibration

For smoothly curved screens, a mesh for a two pass approach can
be generated with 2D freeform deformation tools developed in sec-
tion 6.2.2.1. As curved screens, especially for rear projection, are
not easy to build, and common projector optics are made for planar
screens, we have not tested a calibration of such a setup yet.

4.2.3.3 Photometric and Colorimetric Calibration

Lamp differences and more importantly non-Lambertian projection
surfaces and diffuse interreflections lead to visible edges in the DAVE.
With multiple calibrations from different camera positions and with
head tracking, this problemmay bemostly compensated for. However,
this is a large effort and only works for a single user in our setups.
At the moment, a very rough approximation is used in the DAVE.
Only the brightness in the DAVE is regulated manually using the
lamp power setting of the projectors. Interestingly, many visitors
have problems to locate the physical limitations of the screens when
using the DAVE for the first time. An interesting and high frequency
content seems to lower the perception of the screen edges significantly.

4.2.3.4 Edge Blending

Automatic edge blending by software can be achieved in the Davelib
by drawing an edge blend mask over the final image.
Themain drawback of this method is that black levels of the projectors
are not blended. Especially in a projector array, four overlapping
images may lead to a visible increase of brightness when showing a
dark image. However, the effect is not very obvious and only visible
for very dark content. Currently, we do not yet support dark level
adaption of the rendered images.
After having implemented the soft edge blending approach by Raskar
et al. [RBY∗99], we observe artifacts in the corners of the blend masks
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(see Figure 4.9 below).
They use soft edge blending and use the following equation to com-
pute the attenuation value of projector m at each pixel position (u,v)

Am(u,v) =
αm(m,u,v)

∑i αi(m,u,v)
(4.2.8)

with a weight function

αm(m,u,v) = wi(m,u,v)∗di(m,u,v) (4.2.9)

where di(m,u,v) is the distance to the closest edge and wi(m,u,v) is
defined as 1 inside and as 0 outside the projection area of projector
m. Finally, they use a gamma lookup table to correct for non-linear
projector brightness curves.
To address the artifacts, the weighting function of equation (4.2.9) is
modified. The resulting intensities will still sum up to 1 by construc-
tion of the equation (4.2.8).
Harville et al. come to the same conclusion [HCS∗06] and suggest
to use a multiplication of all edge distances (see below). In practice,
the blending area for our setup is considerably smaller than 50% of
the image. Thus, it is sufficient to only consider the closest horizontal
and vertical edges e1 and e2, with respective distances f1(m,u,v) and
f2(m,u,v). Also, we do not consider edges that should not contribute
to the blending, i.e. distances to edges on the outside of the screen.
We follow the notation of [RBY∗99] and present the following variants,
replacing the edge distance related term di of the weighting function:

d1
i (m,u,v) = min( f1(m,u,v), f2(m,u,v)) (4.2.10)

d2
i (m,u,v) =

(
1

1
f1(m,u,v) +

1
f2(m,u,v)

)p

(4.2.11)

d3
i (m,u,v) = f1(m,u,v)∗ f2(m,u,v) (4.2.12)

d4
i (m,u,v) = ( f1(m,u,v)∗ f2(m,u,v))p (4.2.13)

To compare the functions, the blend masks for a corner of four over-
lapping projectors are examined. d1 is the original function by Raskar
et al. By using the minimum edge distance, there are two regions
where only the smaller value is used while the other one is completely
ignored. This results in a discontinuity of the first order derivative of
the weighting function, leading to visible artifacts. To avoid this, we
introduce a new function d2 with a double fraction, always respecting
both values. To also produce a smooth function at the window border,
we also introduce an exponent p. Trying to reproduce the attenu-
ation pattern of physical blends in a corner with d3, the resulting
function is very similar to the one described in [HCS∗06]. Again we
apply the idea of adding an exponent p and get the new function d4.
With p > 1, the first order derivation of the weighting function also
becomes continuous at the image border.
The figure below shows a detailed comparison of the aforementioned
weighting functions.
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Figure 4.9: Comparison of different weighting functions. Only a crop of
the bottom right corner of themask of the top left projector is shown. The
inner corners of other projectors are rotational symmetric. From left to
right: d1 by Raskar et al., d2 with p = 2.0, d3 by Harville et al., d4 with
p = 1.5. From top to bottom: 3D graphs showing the resulting intensities
in a corner, attenuation map coded in gray values, attenuation map with
contour lines of equal brightness, attenuation map with an unsharp mask
(sharpening) filter applied to highlight the type and amount of artifacts.

Looking at the two bottom rows of the figure above, both d2 and d4

lead to the least artifacts due to their first order continuity inside
and at the borders with p > 1. This is well visible as the iso-intensity
curves in the 3rd row are smooth, whereas the curves in the case of
previous work (d1 and d3) suffer from sharp bends. As both of our
new functions d2 and d4 seem to produce similar results, we further
analyze their differences aswell as the influence of p, shown in Figures
4.10 and 4.11. Increasing p leads to smoother iso-intensity curves but
also narrows the transition width. However, a large transition width
is desired. By experiment, we determine a good trade off for p for
both functions. Finally, we choose d4 with p = 1.5 because of its
slightly visually smoother appearance at a similarly broad transition
compared to d2.
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Figure 4.10: d2 with varying exponents. From left to right: p = 1.0, p =

1.5, p = 2.0, p = 4.0, p = 40.0. The graph in the last row shows the edge
transition between two projectors. By experiment, we found that p = 2.0
leads to good results (center column).
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Figure 4.11: d4 with varying exponents. From left to right: p = 1.0, p =

1.25, p = 1.5, p = 2.0, p = 20.0. By experiment, we found that p = 1.5 leads
to good results (center column).

To compute the blend mask for each projector, the input is given as
geometrical calibration file in an ASCII format with 16 float values, as
descibed in section 4.2.3.1. The photometric calibration file contains
only a single gamma value for now. The same files are used for
the freqency split display (see section 4.3). The mask generation
additionally needs the following input parameters: output file name,
native width and height of the projector, and a flag for each of the
four edges if they should be considered for blending, i.e. whether the
edge is on the inside of the screen.
To get a pixel precise value, instead of forward warping the mask like
Raskar et al., we compute the inverse transformation for each mask
pixel into the screen space.
To be compatible with all frameworks we use, we write out both just
the mask as a PGM file as well as a PNG file with the respective alpha
value and the rgb color components set to black.
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Figure 4.12: A close up view of a setup with only roughly mechanically
aligned projectors. No blending, d1 by Raskar et al. and d4 with p = 1.5
(from left to right).

Whilewe get inferior results than sophisticated camera basedmethods
for full photometric calibration, we avoid their complexity and effort
with a simple and easy to implement approach. Considering the
intended use for only high frequency content (see section 4.3), this
method is sufficient. Evenwith fully calibrated projector arrays, when
using non-Lambertian display surfaces, the calibration is only perfect
for the point of view of the camera. Soft edge blending helps to hide
the transitions. Compared to the commonly used soft edge blending,
we obtain blend masks with considerably smoother results at corners.
Thus, in practice we achieve a slight reduction in perceived corner
artifacts. Furthermore, only a small modification of the algorithm or
program code is necessary.
For more details, please refer to our publication [LF11a].

4.2.3.5 IO Device Library

As indicated above, almost all VR setups have different input devices
and many new devices are produced with a variety of input options.
Writing an application so that it can easily be modified to work with a
different device greatly increases the number of setups it will run on.
Ideally, recompilation of the whole program is not necessary, using
plugins or scripts.
Scripting is a powerful and flexible solution, especially useful when
developing a cross platform application. A commonly used scripting
language in the game industry is Lua [IdFC07], a fast, lightweight and
free scripting language. It can easily be embedded in a Davelib appli-
cation. Our new method of handling input devices for application
control is to use Lua scripting. Also, additional output devices may
be controlled, such as haptic and olfactory devices or a system for
spatial sound rendering. As this part of the Davelib has little to do
with image rendering, it is described in more detail in section 5.4.1.
Even though Lua has a small footprint, embedding a scripting lan-
guage into a program, especially in an external program that is to
be ported, does not fit well to the minimalistic idea of the Davelib.
Nevertheless we consider it a good approach to become less setup
dependent.
Currently, both a Davelib version with and one version without Lua
exist. If in future, the input device library with Lua will be an integral
part of the Davelib, it will also make sense to handle the configuration
with Lua.

4.2.3.6 DaveTracking

This interface provides a unified access to data from 6 DoF tracking
devices. Head tracking data is used internally by the Davelib. Only
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one interface is implemented so far, for our own tracking system (see
section 3.1). It makes sense to also implement support forOpenTracker
and for the IO device library. In the latter case, a separate program
can use OpenTracker as an additional abstraction layer and forward
the data to the Lua script in a unified way. With that method, Davelib
applications do not have the large number of additional dependencies
of OpenTracker when linking.

4.2.3.7 Future Extensions

The Davelib does currently not provide help for the following fea-
tures that may be supported in future versions. Nevertheless, an
application can of course implement such functionality on its own.

Non-Linear Geometric Calibration. Non-planar screens are not
supported. A good way for projecting on smoothly curved surfaces
is to render the necessary view to a frame buffer object in a first pass
and render this as a texture on a warped mesh in a second pass (see
section 4.2.3.2). In the second pass, a colorimetric calibration and a
tone mapping for HDR image content can be easily applied as well.

Spatial Sound. Spatial sound synthesis for auralization of sound-
scape can be realized e.g. with wireless headphones. The relative
position of the sound sources to the ears is required. A supporting
function may be added, using the already available head tracking.

2D GUI. In previous work, many attempts were presented trying
to display a 2D GUI within a VE. However, VR pointing devices and
a 3D rendering of a flat menu are often not the best combination. For
complex menus, sliders, lists etc., an extra window with a standard
2D GUI may be a better solution. It can be displayed on the local or
a remote machine, e.g. a wireless handheld or tablet device in the
DAVE. In other setups, a 2D GUI window on top of the 3D context
may be used, e.g. at the HEyeWall. Such a GUI can be realized e.g.
by using a browser and web technologies or XAML. The information
can be communicated via the IO device library.

4.2.4 Testing and Simulation.

Rooms with VR equipment often have lighting restrictions and usu-
ally receive no or very little day light. For comfort it is often preferable
during application development to work for most of the time in the
office. While most aspects can be tested and problems debugged
there, experiments on the real hardware are also necessary. This is
mostly related to user interfaces and stereoscopic effects that cannot
easily be simulated. Also, multi touch simulators can only be used to
some extend. In rare cases, programs are especially hard to debug be-
cause the error only occurs on the VR equipment and not in the test or
simulation. As this is a rare case, debugging infrastructure and expe-
rience is often poor on the actual VR hardware, i.e. on render clients a
compiler may not even be installed and debugging via console output
or log files is the quickest ad hoc solution but still uncomfortable. It
is advisable to install the same software packages for development
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for the respective operating system on all machines, i.e. on the render
clients, the server and the office PCs used for development.

4.2.5 Rendering Aspects

This part is very interesting for the practical usage of the Davelib,
both for porting existing applications as well as guiding information
for the development of new applications.

4.2.5.1 Necessary Modifications to Port Existing Applications

Applications that were not written with stereoscopic rendering in
mind may not use a correct depth for all objects. An example that we
observed in multiple applications is a skybox as background with a
relatively small size, e.g. a radius of one meter, centered at the view
position. As the depth buffer is disabled to render the skybox as the
first part of the image rendering in these applications, it will look good
on a normal monitor. With stereoscopic rendering however, scene
objects in the distance appear further away than the sky, leading to
an irritating impression.
Screen space processing effects are often written with the assumption
that the projection matrix does not rotate the camera. Also, such
effects may be interrupted at the screen borders. As an example, a
blooming filter or point splatting in a CAVE are likely to look wrong
at the edges. Such errors are partially compensated by our setup with
slightly cropped images of the larger projected area, as an additional
border is available.
Advanced techniques that render with screen resolution in mind, like
state of the art shadow mapping algorithms, may not lead to optimal
results and should be adapted in that case.

4.2.5.2 Best Practice for Implementation

Some simplifications and approximations do not work very well in
a CAVE. An example are plants that may be approximate by very
few textured quads. Due to the better depth perception, such tricks
may be more obvious. A solution may be to better approximate the
geometry by using more textured quads [DDSD03]

Stereoscopic Rendering. 3D graphics with uniform colors may not
be well suited for stereoscopic rendering. If a large area of the screen
has a rather uniform color, e.g. when the object is close, the stereo-
scopic depth perception of the model may be lost and instead, the
screen is visible. It greatly helps to texture objects or at least provide
realistic lighting.
For stereoscopic rendering, a 2D cursor or crosshair appears at the
screen distance and may be perceived at a very different depth than
the 3D object distance under the cursor. Better is to show a cursor
just in front of the objects, either as a quad or as if projected.
Reflective materials or other effects using raycasting, like parallax
occlusion mapping, will need a special adaption to take the head
tracking and stereo offset into account, see section 6.3.6 for details.
An interesting related study showed that strong highlights with
a correct reflection may lead to more eye strain than an incorrect
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quicker approximation, where the highlights appear on the object
surface [McD10].
For stereo displays with a limited field of view, like for fishtank VR se-
tups, objects coming out of the screen, i.e. towards the viewer, should
be carefully used. Clipping of such objects by the viewport should be
avoided. Especially clipping by the left and right screen borders may
lead to a loss of stereo fusion.

Particle Rendering. Rendering of particles may be approximated,
not taking perspective distortion into account. A sphere may be
approximated with a circular shape on the screen. This leads to
visible artifacts especially at the edges of a CAVE. We developed a
pair of shaders to quickly render a sphere for each specified point.
The vertex shader generates coordinates for a quad tightly enclosing
the shape, the fragment shader is used to fill the respective pixels.

Setup. For multiple windows rendered by a single PC, either two
instances of the same program can be started, or a single program
can render both images. The first approach is easier to implement but
may not use system resources very well. The latter method can reuse
memory and sometimes intermediate results like shadow maps if the
windows are rendered on the same graphics card. Note that some
systems like SLI by NVIDIA or Crossfire by ATI allow to interconnect
multiple graphics boards of a PC and may allow e.g. to share texture
memory.

Synchronization. In some applications like simulations, pseudo
random numbers are used. As such numbers will in general be differ-
ent on each PC, a Davelib master should compute and distribute them
to the clients. Even better, the simulation state after all computations
should be synchronized, so that is ensured that each program is in the
same state. This means, that absolute values should be send instead
of differential changes, relying on deterministic behavior. If however,
the simulation result is a large amount of data that cannot easily be
transmitted over the network for each frame, some compromise may
be found. The same simulation could run on all machines but parts
of the results could be synchronized each frame, hoping that if an
inconsistency occurs, it will eventually be recovered from.

Camera Setup. By using an absolute coordinate system for our se-
tups with the z axis pointing up, all real world scenes following that
convention will also be oriented correctly. However, if the content
is more of a 2D nature, like photos for the multi touch setups, it is
not practical to have a correct coordinate system for a table setup,
but when rendering the scene on the HEyeWall it is visible from the
side, i.e. so that the photos only show up as lines. Some sort of 2D
projection or camera setup may be useful, such as an orthographic
camera for planar screens and a cylindrical projection for the DAVE
(see Figure 6.75). We have not implemented a general solution yet,
but use a configurable default camera position and orientation as an
acceptable solution.

Development. During development on a desktop PC, a configura-
tion file can be used e.g. to open two windows with different views.
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Another option is to start two instances, one as master and one as
client, to test the network synchronization.

Porting Effort. In summary, to port an application, larger modifica-
tions that require more effort are usually to add support for multiple
windows, non-planar displays (e.g. for a CAVE), the network syn-
chronization across multiple PCs, interaction, shader tricks and post
processing effects.

4.2.6 Projector Calibration Procedure

With the old projectors for the DAVE, we had eight individual calibra-
tion files. The new projectors have a single lens and thus, only four
calibration files are needed. In Linux we run the same calibration pro-
gram four times on the server, each forwarding the display to the left
eye projector image. Each application reacts to a different gamepad
command, specified by a command line parameter. We also run four
times a program displaying a black image, that is forwarded to the
right eye projector images. Unfortunately, this solution is not platform
independent. In future, we will adapt the solution as implemented
for the HEyeWall.
After the projector calibration is complete, the desktop background
images are updated, using the calibration. Small arrows at the edges
show to the operator quickly, whether the projectors are still calibrated.
Also, the engine definition file for instantreality is rewritten to include
the new calibration values.
For theHEyeWall, the calibration also allows to set amaximumbright-
ness and a gamma factor. There, the soft edge blend masks are re-
computed after the calibration.

4.2.7 Conclusion

The Davelib, is a minimalistic open source library providing func-
tions to port applications with relatively little effort to a range of VR
environments. A small set of external dependencies helps to avoid
problems during compiling, linking and long term maintenance. The
latest change of the Davelib is the flexible IO device handling concept
via scripting. For small projects that do not require a sophisticated
scene graph or complex frameworks, or for testing new features and
algorithms, it can also be used to quickly develop new VR software.
Many 3D applications are written with only desktop setups in mind.
The Davelib helps our mission to promote VR and convince people
to write software that also runs in VR environments.
The ideal situation is that a properly written application can be dis-
tributed as executable and can be run in any VE without further mod-
ifications. This is achieved for the display of interactive 3D graphics
with a perspective camera. A possible partial solution is shown for
the interaction.
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4.3 FREQUENCY SPLIT DISPLAY
The idea of the HEyeWall is to provide a large, seamless, high resolu-
tion interactive wall, allowing multiple users to view and manipulate
3D data. The technology should scale, allowing a larger display by
adding more components, and interaction should not require special
input devices, allowing a simultaneous multi user collaboration.

Figure 4.13: The HEyeWall at IGD
Darmstadt before (top) and after
calibration (bottom).

These requirements leave a rear projection setup as the only choice.
However, transitions are very visible on these setups (see images
below and on the side). A sophisticated camera based calibration that
takes several hours on the HEyeWall in Darmstadt can mostly solve
the problems, but the dynamic range is reduced and the tiles are still
noticeable especially for low frequency content such as plain colors.
To address this problem, the idea for a possible successor is explained
here. It is an attempt to build a large high resolution rear projection
interactive display without visible artifacts from tiled projectors. As
a proof of concept, a smaller prototype was built, the HEyeWall in
Graz.
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Figure 4.14: Visualization of reasons and decisions leading to the choice
of technologies for the HEyeWall in Graz.

4.3.1 Related Work and Motivation

Tiled Displays. The maximum resolution of todays commercially
available projectors is 4k×2k pixels. Such projectors are produced for
cinemas and are very expensive. To increase the resolution or achieve
a more affordable setup, tiled displays must be used.

Projection vs. LCDs. LCDs provide a high contrast and have a
low price. However, bezels lead to a visible black grid between the
displays. With the current technology, a minimum gap of 6mm to
8mm is necessary. Smaller gaps can be achieved with small projec-
tion units assembled into a self contained box each with a screen at
the front, such as the Christie MicroTilesT M LED projectors. Internal
color calibration is used to minimize colorimetric differences. How-
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ever, a 1.3mm visible gap exists and they are much more expensive
than LCDs. Only free standing projectors are able to provide a truly
seamless display.

Front Projection vs. Rear Projection. For direct inspection and in-
teraction, users should be able to go close to the screen. Interactive
front projection screens suffer from shadows cast by the users. With
multiple projectors, some shadows may be eliminated [SCS01]. How-
ever, at least twice the number of projectors is necessary that must
also support adjustable lens shift, increasing the cost. Also, for a large
screen and many users, not all shadows can be avoided. Ultra short
throw front projections can be used for an array with one or two rows
(or columns) but further rows cannot be realized. Rear projection is
well suited for such an interactive display. We combined the display
with a large multi touch interface, as explained in section 3.2.

Figure 4.15: Left: Stanford Interactive Mural. Photo courtesy of HCI
Group, Stanford University. Right: Display Wall at UC Davis VR Lab.
Photo courtesy of Oliver Staadt, UC Davis and University of Rostock.
Both tiled screens have visible tiling artifacts.

Ni et al. present further large high resolution displays in a survey
from  [NSS∗06].

4.3.2 Frequency Split Idea

Considering tiled rear projections, we observe that the tile borders
are visible for low resolution content. As an example, a plain bright
color will show them best, while a region with many details makes
the transition less visible.
From that observation we derive the idea to split the image into
two components. The low frequencies of the image are displayed
seamlessly by a single large low resolution projector spanning the
whole screen. The missing high frequencies are filled up by small
tiled projectors, thus adding the fine details. For a white thin line
on a black background, the large projector shows black and the tiled
projectors show the white line. For the inverted case however, the
tiled projectors cannot subtract a thin black line from a projected
white image. Instead, the large projector displays white with a thick
black line and the tiled projectors fill the missing white, leaving only
the thin black line.
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Figure 4.16: Frequency split 1D example signals. The black line shows the
intensity along a line on the display, the colors show the contributions of
the projectors. A small bright spot at x1 can easily be added by the high
resolution tiled projectors. A small dark spot at x2 however requires more
complex processing.

Figure 4.17: Frequency split example images, showing the contribution of
each frequency range, adding up to the final image.
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Figure 4.18: TheHEyeWall inGraz is a setup to realize the idea of splitting
image frequencies over multiple rear projectors. A multi touch interface
is realized for input.
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4.3.2.1 Soft Filter

Figure 4.19: A cheap optical soft fil-
ter is mounted in front of the large
projector. It is a transparent foil
with clear transparent spray paint.

Without modification, the large projector shows the image signal
with sharp pixel boundaries, i.e. pixels are displayed as sharp big
squares and a black grid is in between. This high frequency signal is
not desired for the low frequency image. In addition, the pixels of the
large projector are not aligned to the tiled projector pixels. A similar
problem exists in HDR projection, where the light of a projector is
further modulated by an LC panel [PS05]. Pavlovych et al. avoid
moiré and aliasing artifacts by slightly defocusing the projector. With
our large projector this is not advantageous, as it contains four lamps.
Their image is not aligned any more when the projector is defocused
(see image below). Furthermore, each color channel has a different
image size and the black grid vanishes only with a stronger amount
of defocus. Amodification of the light engine to avoid these problems
is impractical. Instead of defocussing, an optical soft filter is used. A
clear spray paint on a transparent sheet of plastic works quite well,
however the total contrast is lowered notably. A high quality soft filter
may have a less negative impact, which has not been tested yet.

Figure 4.20: Close up of a test image of the large projector. From left to
right: In focus, a black pixel grid is visible. With a slight defocus, still
a horizontal grid is visible. A strong defocus mostly hides the grid but
leads to an unsuited pixel image. An optical soft filter solves the problems.
Here, the employed filter is stronger than necessary and also reduces the
total contrast notably.

4.3.2.2 Photometric Calibration and Issues

Like for soft edge blending, when adding light intensities from over-
lapping projectors, their intensity transfer functions must been taken
into account. However, transforming both image signals to linear
intensities to split up the signal is not the goal. Instead, the low
frequency signal should remain the same, as otherwise the tiled pro-
jectors would also have to show a part of the low frequency images,
which we want to avoid by design. This means that only the high
frequency image must take the transfer functions into account.
From the high resolution image H to be displayed, an eroded image
E is computed. The radius of the structuring element should be set to
the perceived radius of a blurred pixel by the optical soft filter, in order
to get a large enough dark area and not to waste computation time.
The intensities for the large projector Il and for the tiled projectors It
are computed as

Il(x,y) = e(H)It(x,y) = t−1
t (tl(H− e(H))) (4.3.1)

with the intensity transfer functions tl of the large projector and tt of
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the tiled projector at the image position (x,y). The intensity transfer
functions are roughly approximated by a gamma curve and a maxi-
mum brightness value to reduce the intensity of the tiled projectors
in order to match the large projector maximum intensity.

4.3.2.3 Using Perceptual Thresholds

The human eye can perceive high local contrasts only to a certain
degree. Scattering in the eye reduces the contrast. In addition, rela-
tive brightness differences are much easier to see than absolute ones.
Considering a thin black line on a white background, running over a
transition of two tiled projectors, they must fill in a lot of the white
light and the transition may become visible. To better hide the transi-
tion, the line can be shown as dark gray, i.e. a little brighter. Now the
large projector can display a higher percentage of the white next to
the line, making the transition less visible. We have not tested this
idea in practice yet.
Following Equation 4.3.1, the PC computing the image for the large
projectormust computeE with the full resolution of all tiled projectors
and then downscale the image to the native resolution of the large
projector. This is time consuming and becomes even worse when
building a wall with a higher resolution. An obvious optimization is
to compute an approximation of the low resolution imagewith amuch
lower image size. A visible error results for fine dark image details.
Standard anti aliasing for textures or in screen space averages the
fine dark with brighter surrounding structures, leading to a brighter
region. This error reduces the local contrast but may acceptable, as
discussed above. Approximating the image H with L at a lower image
dimension, the computation for the image of the large projector is
much faster. The PCs computing the image content for the high
resolution tiled projectors still need to render the high resolution
images, but only in a subregion. For them, the low resolution image
L is approximated by downsampling their high resolution image H
to A. This is an approximation, because the anti aliasing method is
different and the pixel grid is different.
With these approximations, Equation 4.3.1 is modified to

Il(x,y) = e(L)It(x,y) = t−1
t (tl(H− e(A))) (4.3.2)
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Figure 4.21: Implementation details of the frequency split rendering. The master renders the image for the
large projector in the double resolution. The image is eroded and finally downsampled. The client windows
for the tiled projectors render their part of the image in full resolution. Fragment shader 1 and the top right
branch of fragment shader 2 compute the estimated light intensity contributed by the large projector. The top
left branch in fragment shader 2 computes the desired light intensity. The difference is to be displayed by the
tiled projectors. Here, the intensity transfer functions are approximated by a gamma curve and a constant MaxBr
for the brightness compensation of the tiled projectors.

Results are shown in the images below for a difficult test scene.
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Figure 4.22: A difficult test scene (top row) and a close-up (bottom row).
The left column shows the result, the high frequencies are in the center
column and the low frequencies in the right column. Here, the calibration
is not perfect. The thin bright line turns out good, the dark line has an
unwanted large dark halo around it. Here, the 8 bit depth of each channel
of the color buffer is too limited and leads to Mach band effects at wide
gradients.

Update Rate. In our experimental application, the master renders
with 60 Hz, limited by the refresh rate. The clients however only
achieve 10 Hz. We assume that the bottleneck is the blur pass which
performs a 32×32 pixel convolution for each output pixel. Aswith the
optical filter the convolution is separable, two 1D passes can be used.
This simple optimization will lead to a major speed improvement.

4.3.3 Rendering Aspects

In addition to most aspects already mentioned in section 4.2.5, addi-
tional issues arise. Synchronization is more important, as rendering
timesmay differ and only the clients have an additional latency caused
by the network synchronization of the scene updates.
With the above approximations, the pixel sizes differ greatly and the
widths of OpenGL points or lines must be adapted. When rendering
the image for the large projector, the line width should be about a
quarter of the normal width. For thin lines this results in a lower
opacity and thus a lower contrast.

4.3.4 Calibration Procedures

4.3.4.1 Projector Calibration

We implemented a projector calibration as a Davelib application. Spe-
cific to the HEyeWall is a grid for the master projector, that once
calibrated is used for defining the corners of the tiled projectors. A
preview of the influence of gamma and maximum brightness values
is available, allowing a rough manual photometric calibration. For
the gamma value, test patterns are displayed. Again, after calibration,
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the engine definition file is rewritten for instantreality and the soft
edge blend masks are recomputed.

Figure 4.23: Manual geometric calibration of the six high resolution tiled
projectors plus one large projector.

Figure 4.24: Our first idea for a cal-
ibration pattern to calibrate inten-
sity transfer functions of the projec-
tors.

Photometric Projector Calibration. To achieve better results, the
idea was to obtain a intensity transfer function of each projector by
a set of differently exposed photos of a calibration pattern (see side
image). The photos are taken with long exposure times in order to
avoid color distortions of the DLP projectors that display each color
one after another. A manual white balance is selected. To get linear
intensity values, we use qtpfsgui that automatically estimates camera
response curves from the provided set of photos and outputs a linear
HDR image. However, due to hotspot problems described below, the
approach is flawed.

Screen Gain and Hotspots. Even though a low gain screen is used,
especially the wide angle projection of the large projector is prone to
problems with hotspots.

Figure 4.25: The major problem
of rear projection is the brightness
changing upon the viewpoint.
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Figure 4.26: Just the large projector showing plain white. A serious
hotspot exists, even with the low gain screen. As the intensity changes
gradually, it is not very distracting for a human observer. In contrast, for
splitting up light contributions between projectors with hotspots at dif-
ferent positions, the issue is severe. The intensities along the red line are
plotted on the right side. For this purpose, multiple exposures were used
to generate a linear HDR image with an autocalibrated camera response
curve. An intensity difference of about 50% is clearly visible, red is atten-
uated most for large angles.

4.3. FREQUENCY SPLIT DISPLAY 115



Recovery of the Projector Intensity Transfer Functions. A better
method may be to temporarily install a diffuse front projection screen
like white paper on the projector side of the permanent screen, taking
the photos from the projector side. We have not tested this idea yet.
Unfortunately, the problems with view dependent intensities will still
exist.

4.3.4.2 Multi Touch Calibration

The calibration for the multi touch input requires a geometrically
calibrated display as just described. The procedure for the calibration
is described in section 3.2.3.

Figure 4.27: Manual multi touch calibration steps for the HEyeWall. 1. All
projectors show a white image and the background images are captured.
The operator taps on a few random locations so that moving projector re-
flections can be taken into account. 2. The operator taps on the center of
each of the six circles for all three cameras.

4.3.5 Discussion

Although the idea to split up the frequencies is good, some drawbacks
remain. In favor of a high performance scalable system, the image
computation is split up to several PCs. The effort of computing and
splitting the video signals adds some complexity to the rendering
systems. But more importantly, the low frequency projector should
have a similar brightness to the sum of all tiled projectors. In our case,
the low frequency projector is huge and costs the same as the six tiled
projectors but the effective brightness is only half of the tiles. The
frequency split system has the same brightness as the low frequency
projector alone, while adding the black level of the tiled projectors,
thus decreasing the contrast of the image. However, some brightness
of the small projectors may be added, at the cost of seam visibility.
Another option is to simply display the same normal image with both
sets of projectors, resulting in a partially blurry image with lower
local contrast but maximum brightness. As in practice no Lambertian
rear projection screens exists, the brightness can only be computed
for a single tracked user. Without tracking, hot spots lead to different
brightness and thus image artifacts.
The figure below shows a comparison of different options for image
generation. In the top left image, all projectors show the image, with
the soft filter used for the large projector, leading to a bright image
with low contrast. The left center image shows only the tiled array
with a bright high contrast image with a high resolution, but with a
transition artifact visible in the blue sky. The bottom left shows the
image of the large projector with a high contrast but a low resolution.
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Frequency SplitUnmodified Image

Tiles + large (with filter)

Just tiles

Just large (without filter) Just large (with filter)

Just tiles
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Figure 4.28: Results and comparisonwith an interactive rendering of a texture, each showing the complete image
and a zoomed in region. The left column shows the projection of the unmodified content image. Note that
soft edge blending is used for the tiled projectors. The right column shows the frequency split result and its
components from the tiled and large projector.

The top right shows the result with the frequency split approach
with a high resolution and no visible artifacts from tiling. However,
the overall image brightness and contrast is reduced. The image
components are illustrated below.
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5
User Interaction

Computers with different form factors than a desktop PC are
often less suited for input methods that were developed
for desktop PCs. As an example, keyboard and mouse are

usually not the best choice for small handheld devices, that are often
used away from a desk. Instead, recent hardware often provides touch
screens. The same is true for virtual environments. In most cases,
text input is not important and also, there is no desk for a standard
mouse to sit on. Thus, other interaction methods are necessary. The
field of Human Computer Interfaces (HCI) is dedicated to improve
such interactions. Here, especially the interaction with the DAVE, the
HEyeWall and the touch screen setups are discussed.
In many of our VR applications, the most common task is navigation.
It is composed of wayfinding, the cognitive part, and travel, the motor
part. Direct and indirect travel techniques are discussed. Addition-
ally, selection and object manipulation may be of interest. Especially,
2D multi touch screen interaction is investigated in that regard. At
first sight, the task of moving the camera or the objects may seem
trivial. However, many details are important for intuitive behavior
and usability.
Travel and object manipulation result in the change of position and
orientation. This is usually implemented by modification of a trans-
formation matrix in the scenegraph. They can be realized with the
same metaphor or interface. However, their meaning is fundamen-
tally different to the user and it is often more convenient to use a
specialized interaction method for each task. The software interfac-
ing of IO devices, GUIs for immersive VEs and system control are
also discussed in this chapter.
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As mentioned before, a wide variety of devices exists, but only the
common ones have widely accepted standardized software interfaces.
Even just to write a program that can control the exposure and read
images from a normal webcam requires a lot of effort, as different
driver types and operating systems exist. Devices that are not as
common may need special software development. Examples are the
nowmore and more popular multi touch screens or the Kinect sensor.
Even though a mapping from those devices to a mouse exists, their
potentials can hardly be used without a special adaption of each
software.
As diverse as the hardware setups and rendering systems are, own
implementations and adaptions to the individual needs are imple-
mented in many VR labs, also trying to innovate. There is no such
thing as a standard device for Virtual Reality. Even for touch screens,
their technology still dictates how to use them best. This is as incon-
venient for developers as it is for the users.

5.1 INTERACTION IN THE DAVE

Many interaction techniques for VEs used today were already imple-
mented surprisingly early. A good example is the work by Vick-
ers from , showing a complete 3D wireframe modeling sys-
tem in a VR setup [Vic72]. Much later, but still already in ,
Fairchild discusses user interfaces for navigation and object manipu-
lation [FLL∗93].
A good overview on most topics on 3D user interfaces is given by
Bowman et al. in [BKLP04] and [BKL∗09].

5.1.1 2D and 3D Travel in the DAVE

5.1.1.1 Related Work

Viewpoint changes by physical walking in the VE are often very
limited due to screens, tracking volume, room sizes or cable lengths.
To allow moving beyond the physical dimensions of the VE, travel
techniques exist for immersive VEs, allowing to modify an additional
offset and orientation. An overview is given in [BKH97], [BKH98a].

Gaze. The direction of travel can be derived from the gaze direction.
However, unwanted motion may result when looking around during
travel [BKH97].

Pointing. By pointing awand and pressing a button, the user travels
into the pointing direction [Min95]. This allows independent travel
and viewing, opposed to gaze based traveling. Smart methods for
velocity control are interesting especially for large scaled scenes to
quickly cover large distances. Trivially, velocity or acceleration can be
controlled by pushing a button. Mine et al. control velocity by mea-
suring how far the user’s arm stretches away from the body [Min95].
Jeong et al. allow the user to control velocity by the applied force on
a button [JJK∗04], also comparing it to other methods [JSCH09].
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Leaning. Leaning can also be used for travel, either measured by a
tracking system [LFKZ01], with force sensors measuring the weight
distribution of a board the user stands on [dHGP08] or with contact
mats triggered by stepping on an area off the center [Aus03]. Such
leaning or stepping techniques are developed to free the user’s hands
for other tasks, such as object manipulation with a hand held device.

Locomotion Devices. Physical locomotion devices are a way to al-
low physical motion, simultaneously traveling. One or two dimen-
sional treadmills are a common choice [DCC97]. To compensate for
balance problems, some 1D treadmills can be rotated. Especially the
2D treadmills require a large mechanical effort. The Cyberwalk project
shows such a setup consisting of a number of small 1D treadmills
mounted on top of another large 1D perpendicular treadmill. The Cy-
bercarpet uses a number of small rotating spheres the user can walk on.
The Cybersphere is a large sphere suspended on an air cushion [FRE03]
in that a user can walk in any direction. The sphere also serves as
a rear projection screen. The VirtuSphere is a similar device with a
wireless HMD and a plastic sphere on bearings.
Some simulators allow a similar motion to the real motion, like the
swimming simulator [FKC∗05]. Similar devices are often used for
training muscles. However, these walk locomotion devices never feel
natural and require a large mechanical effort. Stationary cycles are
easy to build and intuitive to use, like the Georgia Tech VR Bike or
the experiments described in [SPDAM∗02].

VirtualVehicles. Travel can be achieved by steering a virtual vehicle.
A car, plane or magic carpet could be used, or an animal or walking
person may be controlled. The camera or view can be realized by
an automatically following external camera on a smooth path. Care
must be taken so that a sensible part of the scene is visible and the
viewpoint does not enter scene geometry by accident. This sort of
travel is often used in computer games. Suchmotionmay be restricted.
As an example, walking is often restricted to a 2D or 2.5D surface
due to gravity. Predefined paths may be used similar to e.g. a roller
coaster.

Walking in Place. WithWalking in Place [SUS95], the user lifts the
feet alternatingly in order to travel, similar to real walking. According
to their study, this improves subjective presence opposed to more
indirect ways of traveling. In addition, the user’s hands are free for
other tasks. To allow faster motion in large scale scenes, Interrante et
al. present the Seven League Boots interface [IRA07], scaling the motion
along the intended walking direction.

Grabbing the Air. Panning with one or two pointers can be used
for object manipulation as well as for travel. An example is Grabbing
the Air [Mul98], where a user wears two gloves and can pinch the
fingers to close a contact, thereby grabbing that location in order to
move the world location, allowing rotations with two hands.

World in Miniature, Maps. The world in miniature (WIM) meta-
phor [SCP95] can be used to get a static map or overview of the world
and move a representation of the observer in it, thus traveling. Quick
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motion or teleportation is possible but the motion is not very precise.
Also, teleportation is reported to have negative effects on building a
cognitive map, i.e. wayfinding.

Automatic Rotation. Many CAVEs have only three vertical walls,
leaving one wall without projection. To lower the number of times
the user looks at the missing vertical wall, La Viola et al. suggest
to automatically rotate the scene so that the user faces the front
wall [LFKZ01]. A different approach for real walking and HMDs
is to increase the perceived room size in the VE by redirected walk-
ing [RSS∗02], where the scene is rotated unconscious to the user. This
reallyworks only for a knownpath or at least a direction. For relatively
free walking, a room size in the order of 20m×20m is necessary.

Orbiting Viewpoint. A common way to inspect objects at desktop
setups is an orbiting viewpoint. This is rarely used in immersive
VEs. A problem may occur especially with a uniform background
and a display with a small field of view: An error in navigation,
e.g. an inconvenient pivot point for orbiting, can lead to the user
being lost in 3D space, i.e. the object is not visible on the screen. It is
often hard to recover in order to see the object again, a frustrating
experience. Fitzmaurice et al. present several ideas to overcome such
problems by providing more feedback and implementing an undo
slider for navigation [FMM∗08]. To explore a virtual world, velocity or
acceleration are often controlled by the keyboard, joystick or gamepad,
sometimes referred to as walk or flight mode. The changes are relative
to the current state. An effective way used in many PC games is to
use the keyboard for translation with one hand and the mouse for
rotating the view with the other hand.

5.1.1.2 Navigating 1:1 Scaled Scenes

The majority of our immersive 3D applications are real world scenes,
where interactive navigation is realized by walking or flying through
the scene. They are displayed with metric values and their real scale.
Also, they usually have a static up direction. As the DAVE volume is
quickly reached by walking inside the volume, additional means for
traveling further in the scene are necessary. Our goal is to provide a
very general travel method that works for all such models in order
not to confuse people when changing the application. A precise and
slow but also a fast motion should be possible. Finally it should be
quick to learn and easy to use.

Pointing with the Joystick. A straight forward approach to move
about is to use a pointing device and move into that direction when
pushing a button. This was implemented in the DAVE from its early
days. We constructed a joystick with an analogue trigger for nav-
igation and four additional buttons for additional input (see sec-
tion 2.3.4.1). During the years we adapted the navigation to both
our needs as well as the observed behavior of first time users. Lots
can be learned from the visitors, who often start testing during our
explanation. From their reactions it is often possible to see if the
behavior meets their expectations. Usually, we just teach the basics
and provide assistance only when further information is necessary.
As an example, some users do not figure out themselves how to fly
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backwards or to turn and ask how to achieve the task. However, not
all requirements mentioned above are met with the described system.
Our solution is a novel combination of several velocity control tech-
niques, partially similar to the techniques by Mine et al. and Jeong et
al. In addition, a simple automatic rotation is implemented follow-
ing the idea of LaViola et al. An additional explicit rotation is also
possible. Our current implementation is described in the following
paragraphs.

Speed control. Three speed factors determine the velocity. The first
is the analogue joystick trigger, the second one is the distance of the
joystick to a position below the user’s head, and the third is a current
maximum velocity. This current maximum velocity itself is also dy-
namic, growing or shrinking exponentially over time, depending on
the first two factors. It is limited to a highest value derived from the
bounding box of the scene. In that way, the user is able to precisely
navigate at walking speed as well as quickly flying over a city. To slow
down, we use inertia to brake continuously and quickly. This avoids
an unnatural sudden stop when releasing the trigger, which feels too
sudden and disturbing especially at a high speed. The user’s arm
length can be estimated using the maximum glasses’ position above
the floor over a period of time, assuming an upright standing user.
We have not implemented this idea yet and only assume a constant.
Currently, the arm stretch factor is computed using the distance from
the joystick to the position 30cm below the glasses. When a novice
user intends to travel fast, we observe that the speed increases too
slowly at first or may increase to quickly after a short while. We
assume that parameters can be chosen to counteract these effects.

Rotation. As the DAVE does not have a projection wall on the back
side, a user will not see the virtual scene in that direction. When also
wishing to move in that direction this is rather inconvenient. We solve
this problem with two further control options. The first is stretching
out the arm and rolling the joystick around the arm axis. In fact, we
implemented this method because we observed novice users making
that motion, which had no effect at the time. In a way, this is similar
to playing with a toy plane in the hand, or rotating a steering wheel.
For some users, it feels natural to initiate rotation in that way. Only
rarely this leads to unwanted motion.
The second technique is motivated by LaViola et al. [LFKZ01] and
Razzaque et al. [RSS∗02]. Their goal is to use the torso direction to
determine the principal direction and rotate the scene so that the user
faces the frontwall. They use a slow constant rotation and additionally
increase the rotation velocity during a quick motion or rotation of
the head. As we do not want to employ torso or hip tracking out
of practical reasons, we rotate the scene depending on the pointing
direction of the joystick, projected on the ground plane. The rotation
is only applied when also moving, using the analog value of the
trigger and the hand distance from the body. To avoid quick turning
when moving backwards, we use the sine of the angle between the
forward vector and the projected joystick vector, multiplied by a factor
found by experimentation. In that way, a straight backward motion
is possible.
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Exaggerated Rotation. The described interaction methods allow for
an easy to learn, precise and quick control to cover small and large
distances. They use only two 6DoF and an additional trigger value.
The implementation of travel has shown to be more complex than
first expected. The biggest remaining problem for new users is that
they get stuck in confined rooms.
To avoid such problems, we also tested the idea of non-linearly exag-
gerating the head rotation, as independently described in [MVL00]
and [LFKZ01]. We use a simplified approach, again only using the
head rotation as tracked input value, i.e. without using hip tracking.
While this approach generally works well and users are hardly aware
of the exaggerated rotation, the latency is much more noticeable. Sim-
ilar to HMDs, with this technique, static content now moves a lot on
the screen depending on the head rotation. Especially quick head
rotations increase discomfort.
Note that in all described rotation methods, a simple rotation in the
navigation code leads to a rotation around the origin, which is the
center of the DAVE in our case. To rotate around the user as intended,
an additional correcting translation is necessary.

Leaning Into a Curve. We also tested implementations of an aircraft
or motor bike style navigation, mainly with a rolling camera. Trying
to implement such a technique that simultaneously allows the user
to freely move and turn in the DAVE, all of our attempts have failed.
We assume that with additional tracking information like the hip
orientation, ambiguities can be resolved. However, balance problems
of some users may increase. Another idea is to use a seat, constraining
the user’s principal direction, similar to sitting in an air plane cockpit.

Portability. Unfortunately, each application needs a slightly differ-
ent way of implementing the navigation algorithms. The code is
short but it may be worth moving it to a library. At the moment we
have individual implementations for each application, allowing an
easy development. However, once we are satisfied with a change,
we need to adapt all other applications. To facilitate development
and maintenance in future, the same code for travel may be used
with the IO device library, see section 5.4.1. We already implemented
a navigation library that can be used e.g. for orbit, flight and walk
navigation, with no special relation to the DAVE. It uses logarithmic
scaling and momentum and damping for a continuous motion.
For instantreality applications, standard navigation methods exist
for a desktop setup, whereas in the DAVE, our joystick navigation is
loaded.

Observations. Sometimes, novice users trying to control the up and
down directions do not understand at once, that the direction of the
joystick or the arrow attached to it matters. Instead, they assume that
the angle of the arm is relevant. However, the respective shoulder is
not tracked, so using the orientation of the joystick is a more robust
and controllable way.

Gamepad. To provide more buttons and control options, we also
modified a wired gamepad, and later on used a common wireless
gamepad. The idea is to allow more motion control, such as 3D
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translation, rotation around 3 axes and scaling. The latter degree of
freedom is arguably not an element of navigation, but can also be
implemented by modifying the same camera transformation matrix.
Throughout a few years of experiencewith the gamepad, we observed
that most of the additional controls are hardly ever used. As an
example, it is rather disturbing to tilt the horizon in a real world
scene, which even bears the potential risk of users loosing balance. In
our experience, the gamepad is not the ideal interface for the DAVE.
Pointing with a two handed gamepad, as necessary for our velocity
control, feels rather awkward. Also, as there are many first time
users and we aim at reducing the explanation time to a minimum, we
eventually replaced the gamepad with the joystick.

5.1.1.3 Navigating Scaled or Artificial Scenes

Sometimes, a realistic scale is not optimal. As an example, a 3D
model of the solar system would appear very large and objects far
away. Better suited might be a scaled down model, so that e.g. the
earth appears as a sphere with a diameter of 1m. More obvious is
the inspection of e.g. nano structures. At the real scale, they would
just not be visible at all. A magnified version, again to approximately
human scales, is probably much more useful.
Another idea is to scale eye distance instead of the model. However,
we found that it is less confusing to keep all tracking and navigation
related coordinates in real metric values and only scale the model
to an appropriate level. This is as simple as applying the scale to
the model view matrix. Note that this also affects normal vectors for
OpenGL fixed function lighting, so that the vertex normals should be
normalized before usage.

5.1.1.4 User Position and Pose

Figure 5.1: A simple control only using the absolute position of the glasses.
Left, center and right positions are used for steering as indicated by arrows
that are overlaid on the photo for illustrative purposes. When the glasses
are higher than 1.4m above the ground, the penguin brakes. When they
are lower than 0.8m above ground, the penguin speeds up.

Absolute Values. Without a
physical device, the position or
pose of the user can be directly
used as input values. The idea
of using a pose or gesture more
similar to a pose in the real life
is promising, hoping to achieve
a more intuitive way of naviga-
tion by using implicit knowledge
or reasoning. With the PPRacer
game (see figure below and sec-
tion 6.3.9.2) as an example, the
user controls a penguin which
gets faster when the user lies
down, a pose that copies the
penguin and seems better suited
for gliding down the slope than
standing upright. We simply use
a thresholded signal of the abso-
lute head position to control the
penguin. Sometime users may unconsciously move with their body
off the center and therefore not be able to move the head far enough
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to steer in the intended direction. An additional feedback or at least
a projection of a center line may be useful.

Figure 5.2: In this Quake III arena game, the absolute position of the user
is employed to control the walking speed. It turned out that this method
is rather hard to use. The arrows were added for illustrative purposes.
Also note that the photo was taken in mono, from a point of view near the
camera and the user does not wear the glasses, for a nicer photo.

Leaning. We conducted experi-
mentswith travel triggered by the
head position offset from the cen-
ter of the DAVE. This is similar to
velocity control by leaning, and
the rotation speed around the
up axis by the head orientation,
as described first by Fairchild in
1993 [FLL∗93] and was later re-
fined in [FSG98] and [LFKZ01].
As we do not have tracking infor-
mation of the lower body part, we
simplify the leaning to an abso-
lute offset from the DAVE center.
We were skeptical about its out-
come and indeed it proved rather
hard to control. As an example,
the game Quake III Arena in the
DAVE is a lot harder to control
with that technique than with a

normal PC with a mouse and a keyboard.
For more details, please refer to our publication [SRO∗08].

Figure 5.3: Using the fourmarkers on the glasses plus a stickwith amarker
in each hand, a pose is estimated. This pose serves as input to control an
application, like this glider simulation. As indicated by the illustration,
the user lowers the right arm and raises the left arm in order to fly a curve
to the right. A step forward results in tilting down, stepping back leads
to flying up.

SkeletonBased Interaction. For
the input of the glider applica-
tion, we use a two stage approach.
The first part is is a skeleton es-
timation of the user. Different
methods can be used to estimate
the skeleton from the few input
values. One uses a model con-
structed by reasoning, another
uses the most likely pose from a
database whichwe obtainedwith
the help of motion capturing (see
section 3.1.7).
This skeleton is then used as in-
put to control the glider (see fig-
ure below). This approach makes
it easy to use a different method
for estimating the skeleton with-
out modification of the game con-

trol logic or allows other applications to use the same interface.
In fact, due to the well working Kinect hardware together with e.g.
the openNI library that quite robustly estimates user skeletons, there
is an extended interest in such skeleton based interaction. For more
details, again refer to our publication [SRO∗08].
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5.1.1.5 BCI

Figure 5.4: Brain computer inter-
face (BCI) used as input to control
navigation in the DAVE. A state
change is detected within about
two seconds and send to the DAVE
server via UDP or TCP. See sec-
tion 6.3.10.1 for a description of the
applications.

Together with the Department of Psychology, we conducted several
studies with a Brain Computer Interface (BCI) in the DAVE. Unfor-
tunately, reality is far behind hopes expressed in science fiction. At
the moment, with this setup very few distinctive patterns can be
recognized with about a couple of seconds delay. Also, a tedious
wiring and a long training period are required. We tested simple start
and stop commands to navigate on a predefined path. In another
experiment, binary commands were interpreted to trigger an event.
Even though this is very restrictive, it may be an interesting way to
communicate for some severely disabled persons. The experiments
and setup are described in more detail in section 6.3.10.1.

5.1.2 Object Manipulation in the DAVE

5.1.2.1 Related Work

Object selection is often realized by ray casting [PFC∗97]. Gaze di-
rection, pointing direction or bearing from the eye to a hand may be
used. However, resting the hand is not possible and natural tremor
makes it difficult to precisely control pointing. Additionally, when
pushing a button, the hand may move, which makes a selection of a
small target difficult.
Once an object is selected, translation and rotation changes can be
applied in a relative way, copying the motion of the input device.
Objects can also directly be picked at their location (i.e. without ray
casting), with physical limitations of the VE often requiring additional
travel. A technique to non-linearly extend the arms is go-go presented
by Poupyrev et al. [PBWI96].
Kaiser et al. support and disambiguate selection and object translation
by additional voice commands [KOM∗03].
Especially for small working volumes for 3D interaction, haptic input
devices arewell suited. Motorized arms like thePhantomdevice [SS97]
or points in 3D controlled by wires like Spidar [BIS01] work well for
a desktop setup. For collision detection a high update rate of 1000 Hz
is common.
For an intuitive and natural behavior of objects with respect to ma-
nipulations, gravitation can be used and objects may not be allowed
to interpenetrate. A physics engine with collision detection can be
used to meet these requirements.
Fröhlich et al. present the Responsive Workbench, where virtual springs
can be attached to objects to apply forces, while the mentioned re-
quirements are met [FTB∗00]. This also enables simultaneous collab-
oration.
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5.1.2.2 Picking with the DAVE Joystick

Figure 5.5: Picking and moving ob-
jects. Picking is started by ray inter-
section on a joystick button press.
Relative motion and rotation of the
joystick are then applied to the ob-
ject.

The most successful object manipulation application that we have
implemented for the DAVE, is repositioning and rotating items in
an OpenSG application (see section 6.3.3.1 and side figure). A ray
from the joystick in the pointing direction is used to pick the closest
intersecting object. To simplify aiming, this ray is visualized before
picking. Amethod similar to the go-go interaction technique [PBWI96]
proves successful, where a large translation is scaled non-linearly. We
also tried to use the same idea of non-linear scaling for rotation, as
for some rotations, the user must twist the hand uncomfortably or
split the rotation into several small rotations. However, we found that
this is rather hard to control, as a user seems to expect consecutive
rotations to be independent. But also, undoing a physical rotation of
the hand should undo the rotation of the virtual object. As an example,
after picking up an object and slowly rotating it for inspection, the
user may position the hand back into the initial state, also expecting
the virtual object to do so.
As in the current implementation the physics simulation for the se-
lected object is turned off during manipulation, it can also be moved
through other objects like walls. In some applications, this may be
an unwanted behavior or result in unwanted motion due to collision
response once the object is released. However, similar to [FTB∗00],
we could move an invisible triangular frame instead, temporarily con-
necting each of its vertices with a spring to the closest object surface.
This would indirectly allow a 6DoF manipulation of the object, as
well as preventing the object from penetrating other objects. We have
not implemented this idea yet.
A related object manipulation is an indirect control of parameters for
a Generative Modeling Language (GML) [Hav05] object, which allows
parametric modeling. While a 2D GUI on a handheld device can be a
good way, another option is to move sliders in 3D space, positioned
close to the object itself. This makes sense especially for parameters
controlling the spatial extend of the object, like for resizing the wall
of a house or a window in that wall. A small colored sphere indicates
a handle and a path may show a restriction where it can be moved
(see section 6.3.4.4).
We have also tested triangle mesh manipulation and coloring, see
section 6.3.4.2. However, for sculptingwe found that a desktop setting
with a haptic device is much better suited.
At the moment, we use the same input device for either traveling
or object manipulation and switch the mode with a button. A dedi-
cated second device could be used, however this is likely to confuse
novice users. A second device may also be interesting in order to
test two handed 6 DoF interactions like object deformations with
Twister [LKG∗03].
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5.1.3 Menus and GUI for DAVE Applications

Figure 5.6: A GUI with 2D im-
ages arranged in a 1D array, placed
within the 3D scene. Problematic
are clipping planes and occlusion
of the menu items by close objects
in the scene.

Many designs for 3D menus and GUIs were tested by other re-
searchers. However, the additional third dimension compared to
a desktop setup does not seem to improve the overview and usability.
We only tested a simple menu in one application to select a furniture
item (see section 6.3.3.1 and side figure). A problem occurs when the
2D menu, which is rendered on a plane in the 3D scene, intersects
with the scene geometry, partially hiding the menu. When disabling
the OpenGL depth test, the menu will never be hidden, however its
depth will still be perceived as behind the object surface. Instead, it
may make more sense to use a portable device with a conventional
2D GUI. The interface to the application can be realized with the IO
device library (see section 5.4.1).

5.2 INTERACTION ON THE HEYEWALL

5.2.1 Related Work

Guimbretière et al. show ways of interaction with 2D documents
on a large wall display [GSW01]. Especially, digital white board
functionality like annotations or zooming are discussed. Wissen
presents a laser pointer interaction for a large wall display [Wis01],
facilitating positioning or object dragging over large distances. Ball
et al. examine physical navigation versus moving objects on a large
display wall [BNB07], also using a handheld Gyration mouse. Bornik
et al. workwith a hybrid approach using both a conventional tablet PC
for system control as well as a handheld tracked input device to work
with volumetric data [BBK∗06]. Weibel et al. suggest to use an Anoto
pen on a paper on a clipboard [WPH10], as an indirect but lightweight
input device. Another example is presented by Ballagas et al. who use
the camera on a cell phone to enable pointer interaction [BRS05]. For
each click, the screen shows a pattern that the phone uses to locate
the pointer position.
Game console devices like the Nintendo wiimote or the Microsoft
kinect can also be used to control image content of large displays.
With an additional table next to the display wall, just mouse and
keyboard or tangible tracked objects are an option, as well as a multi
touch table.
An slightly dated overview of public interaction on large screens is
given in our report [LB04]. There, cell phone interaction or vision
systems are briefly described, enabling different types of applications.

5.2.2 Implementation

Important intended interaction methods for the HEyeWall are touch
interaction which is described in the following section, an infrared
laser pointer and a wireless gamepad. New applications may require
novel ways of interaction and further research in that area. A kinect
sensor looking down from the ceiling to recognize arm gestures may
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be an interesting interface in future.

5.3 TOUCH SCREEN INTERACTION

Multi touch user interfaces go beyond just multiple pointer support.
The great vision is that digital objects become (almost) tangible, can
be touched and manipulated very much like objects of the real world.
The challenge is to provide virtual objects with physically plausible
behavior, hoping to enable access to the digital world for a wider
range of people with less computer experience. In that sense, an
intuitive, natural behavior of the interface is usually very important.

5.3.1 Object Manipulation with Touch Screens

5.3.1.1 Related Work

In some cases of 2D interaction, touch and multi touch interactions
are more sensible than mouse input. On a touch screen, the interac-
tion takes place where the information is displayed, requiring less
cognitive load than indirectly moving a mouse pointer across a dis-
located screen. A major drawback is that precise manipulation is
difficult because fingers and hands occlude parts of the screen. In
addition, the finger tip is usually significantly larger than a pixel and a
pixel precise selection is hard. Examples for touch screen installations
are public displays or screens in industrial, medical or collaborative
environments with special requirements. Selection may be more con-
venient than with a mouse. As the price for one or two pointer touch
technology drops rapidly, touch support may become very common
for normal desktop monitors in future.
Ringel et al. discuss touch interaction for a display wall [RBJW01]
with a rear diffused illumination setup. The magic table is an early
example of translation, rotation and scaling of photos with one or two
fingers and for multiple users [LB04]. The fingers are tracked with a
camera and the image is projected from above on a table.
The idea can be extended for 3D objects on a 2D screen. Hancock et al.
describe multiple interaction possibilities allowing rotation and 2D
translation [HCC07]. In one case, the number of touching fingers is
used to select among different modes. Another technique uses areas
relative to the object, where the position of the first touch selects the
mode. The motivation and application is to arrange 2D documents,
represented as flat boxes on a desktop.
The issue of 6DoF motion of objects is discussed by Schöning et al.,
who especially consider parallax effects on a stereoscopic projection
screen setup [Sch08]. Similar to our observations, they state that the
control of all six degrees of freedom is non-intuitive and requires
complicated gestures.
Reisman et al. use a direct 6DoF manipulation with up to three fin-
gers [RDH09]. The transformation matrix is computed by a constraint
solver so that the surface stays under the three contacts. Interaction
with three fingers seems to require some learning and large rotations
may have to be split up into several smaller rotations. A fourth finger
can be used to also control the focal length of a perspective camera.
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Agarawala et al. present the BumpTop, a 3D box as a desktop, featuring
desktop icons and documents with physically behavior [AB06]. The
objects are flat boxes that can be pushed around, piled up or spread
out, trying to recreate a more realistic setting similar to a real world
desktop. Selections, menus and gestures are supported.
Wilson et al. show physically based 6DoF manipulation and also soft
body interaction on a vision based touch screen that can also detect a
palm or other tangible objects [WIH∗08]. In their system, arbitrary
contact shapes are realized by representative particles on the contour,
each applying a force. Optical flow is used to compute the motion
vectors of the particles. Another technique uses joints, similar to ropes
of a fixed length. An off-center force leads to a rotation, also with just
a single contact. Hancock et al. also present a physically based 6DoF
interaction [HtCC09]. They use gravity and a metaphor allowing to
pick up objects.
Jeff Han showed a number of well suited applications for multi touch
tables at his TED talk [Han06] in .
As mentioned before, tangible objects can be used on table setups,
if supported by the sensing technology. Examples are the reacTable
using reacTIVision [KB07], where tangible objects can be combined
in order to produce sound, or the ARToolkit [KB99] which allows to
track objects with an attached marker using a camera. However, if
a multi touch screen is used which does not natively support detec-
tion of fiducial objects, our method may be used to recognize fixed
constellations (see section 3.2.4).

5.3.1.2 Moving, Rotating andScaling 2DObjects onTouchScreens

We implemented two different methods for multi touch object ma-
nipulation. The first uses gestures and is described in the following
paragraphs, while the second uses a physically based approach with
virtual springs, also suited for 3D object manipulation.
A naïve implementation for 2D object transformation can simply
translate the object according to the translation of the first touch point,
and use the relative angle and distance of the first two touch points
to modify orientation and scale. However, unexpected or unwanted
motion results. Most importantly, the object surface moves relative to
the fingers, instead of sticking under them.

Basic Version. For a simple, intuitive manipulation, the necessary
algorithms are much more complex than we first expected. The code
below, written in processing, shows amuch better, but still basic version
for 2D object transformation.
With the code below, with one or two fingers, the first touched local
object position always remains under the fingers. With more than
two fingers, averages of results of all pairwise combinations are used.
Whenever a finger is released or added, the local reference finger po-
sition f irstTouchPos on the object is updated (lines 3 to 9 and 57 to 64).
When fingers are moved, their new local coordinates currentTouchPos
are computed (line 5). The neworientation is computed by the average
difference angles of all pairwise combinations of two f irstTouchPos
and two currentTouchPos difference vectors (lines 11 to 28). Similarly,
the scale is calculated (lines 30 to 44). With the updated rotation and
scale, the average translation is computed for each contact (lines 46 to
53).
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1 void refresh (TuioTime bundleTime) { // update translation, rotation, scale
2 if (moved) {
3 // update local values
4 for ( int i=0; i<cursorNum; i++) {
5 cursors [ i ]. currentTouchPos = global2local(cursors[i ]. currentTouchPosGlobal);
6 if (needUpdate) { // update of firstTouchPos
7 cursors [ i ]. firstTouchPos = new PVector(cursors[i].currentTouchPos.x, cursors[ i ]. currentTouchPos.y);
8 }
9 }

10

11 // update rotation
12 if (cursorNum > 1) {
13 PVector sumF = new PVector(0,0);
14 PVector sumC = new PVector(0,0);
15 for ( int r1=0; r1<cursorNum−1; r1++) for (int r2=r1+1; r2<cursorNum; r2++) { // all pairs
16 // pairwise rotation
17 PVector rotF = new PVector(cursors[r1].firstTouchPos.x, cursors [r1 ]. firstTouchPos.y);
18 rotF.sub(cursors[r2 ]. firstTouchPos);
19 rotF.normalize();
20 sumF.add(rotF);
21

22 PVector rotC = new PVector(cursors[r1].currentTouchPos.x, cursors[r1].currentTouchPos.y);
23 rotC.sub(cursors[r2 ]. currentTouchPos);
24 rotC.normalize();
25 sumC.add(rotC);
26 }
27 tOrientation += atan2(sumC.y, sumC.x) − atan2(sumF.y, sumF.x); // add difference angle
28 }
29

30 // update scale
31 if (cursorNum > 1) {
32 //float avgScaleF = 1;
33 float scaleSum = 0;
34 int sNum = 0;
35 for ( int r1=0; r1<cursorNum−1; r1++) for (int r2=r1+1; r2<cursorNum; r2++) { // all pairs
36 // pairwise scale
37 float scaleF = cursors[r1 ]. firstTouchPos.dist (cursors [r2 ]. firstTouchPos);
38 float scaleC = cursors[r1 ]. currentTouchPos.dist(cursors[r2 ]. currentTouchPos);
39 //avgScaleF ∗= scaleC/scaleF;
40 scaleSum += scaleC/scaleF;
41 sNum++;
42 }
43 tScale ∗= scaleSum/sNum; // multiply with scale difference
44 }
45

46 // update translation
47 PVector t = new PVector(0,0);
48 for ( int i=0; i<cursorNum; i++) {
49 t .add(cursors[ i ]. currentTouchPosGlobal);
50 t .sub(local2global (cursors [ i ]. firstTouchPos)) ;
51 }
52 tTranslation [0] += t.x/cursorNum; // add average position difference
53 tTranslation [1] += t.y/cursorNum;
54 }
55 moved = false;
56

57 /////// update of firstTouchPos
58 if (needUpdate) {
59 for ( int i=0; i<cursorNum; i++) {
60 cursors [ i ]. currentTouchPos = global2local(cursors[i ]. currentTouchPosGlobal);
61 cursors [ i ]. firstTouchPos = new PVector(cursors[i].currentTouchPos.x, cursors[ i ]. currentTouchPos.y);
62 }
63 }
64 needUpdate = false;
65

66 redraw();
67 }

Figure 5.7: A basic example written in processing, showing the part responsible for 2D object manipulation on
a multi touch screen.
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Improvements. We implemented a number of further improvements.
Image indices are stored in an ordered list, so that recently touched
images are drawn on top of images that were not touched for a longer
time. Inertia for translation, rotation and scale has been added. We
found that physically correct drag does not represent what we intend,
so we decrease the drag for fast moving objects, effectively allowing
flicking. We also introduce soft constraints on scale and translation:
When released, objects smoothly adjust to their specified limits. In
contrast, using hard constraints, it may not be obvious for a novice
user that a constraint is active. When sliding freely without finger
touch, objects bounce off the window border. To mimic damping
and friction at a collision, we decrease the speed and add a torque.
When dragging an image with a single finger off center, we also add a
torque. The mentioned effects also work when zoomed in by a large
factor. These improvements are illustrated in the video below.

Figure 5.8: Video (without audio) showing advanced features ofmoving 2Dobjects on amulti touch display. The
objects robustly stay under the fingers when possible. Soft constraints and lower drag for flicking are additional
features. Also, when clicking on an object, it comes to the front.

5.3.1.3 Physically Based Manipulation with 2D and 3D Objects
on Touch Screens

Similar to the Responsive Workbench [FTB∗00] where objects can be
moved in an immersive setup with the help of virtual springs, we
implemented a physically based manipulation for 3D objects, also
using virtual springs that can be attached to the object. However,
we transferred the method to a 2D multi touch setup and added
the ability of scaling as well as visual cues for a user feedback. The
temporary spring forces between each finger touch and the object
surface are employed to provide an intuitive interface to translate,
rotate and scale 3D objects. The method provides clear feedback to
the user and has no hidden states or functionality.
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Figure 5.9: Attaching virtual springs, 3D models can be moved, rotated
and scaled on this multi touch wall.

In the following description we refer to object manipulation meth-
ods as gesture based when a finger drag directly influences the object
properties, like described above for the 2D object manipulation.

Drawbacks ofGestureswithMultipleModes. Gesture-basedmulti
touch input methods are commonly used in practice. Usually they
distinguish between different interaction modes by the number of
fingers on the object. As a common example, a single touch motion
may be used for 2D translation and two touch points influence 2D
rotation and scaling. A third point allows both the definition of a
rotation axis with the first two touch positions and the control the
amount of rotation with the last finger, also using the temporal order
of touches. This results in a very different behavior depending on
the number of fingers. This works reasonably well for a trained user,
however simply brushing over the object with a few fingers is likely
not to lead to predictable motion. Such a gesture may be one of the
first things an unistructed novice user tries and the feedback is not
helpful to understand the system or learn how to use it better.
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Figure 5.10: The virtual scene with object and world coordinate systems
and the image on the screenwith the screen coordinate system. For a finger
drag from As to Bs a spring force from Aw to Bw is applied to the object.

Physically Based Method for
Moving 3D Objects. The goal
is to overcome these drawbacks
and at the same time to provide a
general manipulation for six de-
grees of freedom: 3D rotation
and 3D translation. As an alter-
native to 3D translation, 2D trans-
lation plus uniform scaling may
be used. We achieve this with
a physically-oriented simulation
method for moving objects by at-
taching spring forces to surface
points. The geometric configura-
tion is shown in the figure on the
side.
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Computing the end points of a spring. At the first new touch of a
finger at screen position As, the world coordinates Aw of the surface
contact point on the object are determined. This point Aw is then
transformed to the local object coordinate system, which is used as
one end point of the new spring. The zs coordinate in the screen
coordinate system is saved as well at the first contact in the local
object coordinate system.
The second spring end point Bw moves directly with the finger, cal-
culated with the updated Bs touch coordinates from the multi touch
interface and the previously saved zs value. Clearly, the goal is to
decrease the distance between Bw and Aw by moving the object ap-
propriately. Also Aw has to be recomputed in each frame because the
object moves. It is the first surface contact point in the object coordi-
nate system that is transformed into the world coordinate system.

Numerical Physics Simulation Step. In each simulation step, after
updating all spring end points the formulae of Newtonian physics are
evaluated numerically for each object. The equations for translation
and rotation are straightforward, with the translational acceleration

at = wt ·∑
−−−→
AwBw (5.3.1)

with the weights wt = 1/mass, and the angular acceleration

ar = wr ·∑(
−−−→
OwAw×

−−−→
AwBw) (5.3.2)

with the weights wr = 1/(moment of inertia). Similarly, we introduce
the acceleration of the scaling factor by

as = ws ·∏

∥∥∥−−−→OwBw−
−−−→
AwBw

∥∥∥∥∥∥−−−→OwAw

∥∥∥ (5.3.3)

where −−−→AwBw denotes the average force vector, and ws is a weight
to influence the scaling inertia. We consider only uniform scaling,
although non-uniform scaling could easily be achieved with three
independent scaling factors for each dimension. However, we under-
stand non-uniform scaling as a form of object deformation, which is
not the goal here.
Object masses, spring forces and damping (friction) coefficients can
be adjusted to fit best to the applications needs.

Scaling. We differentiate between scaling, moving along the z axis
and zooming. Scaling means to resize objects without changing their
position. Moving objects along the z axis does not influence the object
size in the world coordinate system but will also lead to a different
size of its projected image (see figure below). Zooming is an attribute
of the camera view of the scene.
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Figure 5.11: Top view in screen coordinate system. Moving the fingers
away from each other enlarges the object’s projected image. This can be
implemented either a.) by scaling or b.) by translation in z direction. The
blue arrows show the applied forces.

With the described system up to now, translation in screen coordinate
z direction is not directly possible. In fact the object will move along
that axis because rotation centers are not fixed, but this effect is not
suitable for intentional motion in the direction perpendicular to the
screen.
However, the scaling functionality can be replaced by the functionality
to translate along the z axis. The computation of Bw changes in the
way that zs is chosen so that the spring length is minimal (see the
figure above). Obviously this only works with a perspective camera.

Figure 5.12: Different alternative modes that may allow a quicker and
more precise control but also require some training: a.) Context menus,
b.) State machine that changes the mode after each interaction, c.) Mode
depends on the position of first touch relative to the object, d.) Spring
forces are moved in z direction depending on relation to projected center
of object.

Constraints and Modes. An
advantage of gestures is a pre-
cise motion. Such a system can
provides several modes with dif-
ferently restricted motion, allow-
ing e.g. to adjust rotation and
translation independently. Such
constraints can also be realized
with the physics approach. As an
example, scaling could be disal-
lowed, or the translation could be
restricted to a path. Even though
such mode based interaction is
less intuitive and takes more time
to learn, it may perform a lot bet-
ter for expert users and certain
tasks.
The described scenario is tailored
to first time users and intuitive
control. We can easily imagine
many different expert modes for
a faster and finer control, using
different modes with different
constraints. As an example, an
additional finger on the surface
could indicate a mode selection
of either just translation or just ro-
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tation. Expert users will certainly prefer the quicker way that also
can be tuned to the specific task. Although the learning time of this
technique is very short, it is still significant, and the approach is not
intuitive. In contrast, without using constraints or modes, a direct
feedback is given with no hidden functionality.
The figure above shows a few ideas for expert methods using modes
with different constraints. A global or local context menu can be used
to select the current mode (a.). A state machine may be used for drag
events in quick succession. The first drag causes only translation, the
second only rotation, the next only scaling (b.). A visual feedback to
indicate the current state seems useful, e.g. overlaid arrows showing
the currently possible motion directions. The position of the first
touch relative to the object could be used (c.). In the center zone, a
mode could be selected only allowing rotation around the x and y
axes. In the border zone, a mode for translation in x and y direction
may be selected, also allowing scaling and rotation around z with
two fingers. Yet another idea is to use the motion direction relative
to the object. A finger drag away from object center in the screen
coordinate system may result in a high translation force and little
rotation, whereas a motion towards the center could lead to a high
torque and little translation. Finally, scene specific constraints should
be employed to reduce the number of DoF. Examples are collision
detection and other effects of a scene in a physics engine, like gravity.

Properties. For both the gestures and physical based methods we
can easily replace the scaling by a translation along the z axis. This
may be an important choice for some applications. While one could
allow for both scaling and z motion with different modes, additional
rendering cues or a stereoscopic display are needed for a clear visual
distinction.
We assume that each object is centered in its object coordinate system
on its center of mass. With gestures we always rotate around the
center of mass whereas with the physics approach it depends on the
location of the surface contact points.

Physics Implementation Details. To be most flexible for testing
new ideas, we implemented a basic physic simulation instead of using
a physics engine. To determine the surface contact position at the first
touch of a finger, we use the OpenGL depth buffer and transform the
screen coordinates back into the object coordinate system. Instead of
using the z buffer value of the exact touch position As, we find the
closest z buffer value in a 15 × 15 pixels wide window around As.
Thus, the picking is more robust and objects can be grabbed at the
silhouettes more easily.
An advantage of using the depth buffer is that the object geometry
does not have to be knownoutside of the drawing function. In practice,
a rough bounding volume like a bounding sphere is sufficient to
decide whether a new touch point belongs to a specific object.

Feedback Visualization. Feedback for the user is very important.
Especiallywhen nothing happens after a touch, e.g. due to a constraint,
the user should be reassured that the touch was recognized. We
achieve this by using moving glitter particles under each touch point.
We also show springs rendered as lines, as well as their surface contact
points.
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Figure 5.13: Ourmethod allows brushing over the object, regardless of the
number of contact points. This demonstrates intuitive and error tolerant
object manipulation.

Observations. Our experience
of the past years shows, that some
first time users try to move ob-
jects by brushing over them with
several fingers (see figure on the
side). Some hardware setups
are not very sensitive for light
touches and may not deliver any
detections. A gesture based im-

plementation without inertia may lead to a short sudden motion.
Both problems lead to an interface either ignoring the users actions,
or behaving in an unexpected way. Thus, we encourage using intu-
itive interaction methods with constant feedback, like our presented
method. When using different modes, the available degrees of free-
doms should be clearly visualized.
Multiple contactsmay lead to oscillations and instability of the physics
simulation. We experienced problems especially for large scale factors
and rotations. One idea is to dynamically remove springs that may
lead to such problems.

Figure 5.14: Video (with audio) showing 6DoFmulti touch interactionwith 3Dobjects. A simple implementation
with gestures as well as a physically based approach are demonstrated.

Informal User Study. We conducted a small user study with ten
computer scientists with a moderate to good knowledge of touch
screens. Users had to correctly position, scale and rotate both photos
in 2D as well as 3D objects in space, without any explanation or learn-
ing phase. Three interaction methods were tested. Method properties
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are hard to measure subjectively, they can be largely influenced by the
type of application and the chosen parameters. However, we could
observe some tendencies.
The gesture approach worked especially well for people having used
other multi touch systems before. As expected, a few participants
were confused that with multiple finger contacts a translation was
not possible any more.
The physically based method without constraints was mostly consid-
ered to be a bit easier to understand and more enjoyable to use. In
terms of task completion times it performed well with the 2D photo
task, with no significant difference to the gesture approach. In the
3D task it was considered to be less controllable, mainly because of
unintentional simultaneous rotation and translation.
As third method we used our spring model with constraints, as an
example expert mode. We employ two states or modes: first objects
are only translated, any following drag in quick succession only ro-
tates, while scaling was always enabled. This method was designed
to prevent the already mentioned problems in the 3D condition, but it
showed to be too difficult or unintuitive in the beginning. Participants
approved the idea but would have needed an explanation and more
training to master that method.
Most participants were not satisfied with the amount of pressure
that was needed on the FTIR setup to generate a touch event. Also,
occasional tracking errors were negatively mentioned.
An interesting finding is that it is very hard to find an actual applica-
tion that requires the full 6DoF manipulation of 3D objects. Other re-
search usually present 3D puzzles or object placement. Only Hancock
et al. present a real application, a virtual sandtray for psychological
therapy [HtCCI10].

Future Work. Hardware supporting force or pressure values for
each touch point can be useful. An obvious idea is to influence the
weights in equations 5.3.1 to 5.3.3 with regard to the amount of pres-
sure of each finger.
Multi touch hardware and drivers providing shape information can
be better employed than just using the center of a shape. Larger areas,
e.g. of the palm, can be sampled and represented by multiple springs.
In some applications it will be very useful to combine the abilities
of moving of objects with navigation. As an example, touches not
hitting any movable objects may be used to zoom or move and rotate
the camera.

Conclusion. Our contribution for 3D object manipulation on multi
touch screens is a uniform approach, using a mass-spring model on a
multi touch setup. In addition, we add scaling in a consistent way. For
specific applications it is easily extensible or tweakable, e.g. by adding
attraction forces, gravity or collision detection. Benefits are a more
intuitive interface needing less explanations, a more stable behavior
in case of finger tracking errors and a more enjoyable experience due
to inertia.
A disadvantage compared to the gesture based method is, that finger
drags influence all transformation parameters at the same time, some-
times causing necessary corrections. However, the advantages of the
gesture based method can be realized in the physically based system
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with modes and constraints, at the cost of intuition. We advocate
against today’s common practice of using the number of fingers for
mode selection, as it is unintuitive and may be less robust.

5.3.2 Navigation and Travel on Touch Screens

We have used a system for indirect navigation by dragging a finger
on a 2D map, thereby translating the camera of a 3D scene visible in a
second window. An additional finger allows to rotate the camera by
setting the view direction. Jung et al. describe an early version of the
system in [JKB∗08]. This approach is made to jump or teleport at a
specific position on a map. However, we noticed that many users try
to smoothly fly through the scene. With this approach some training
is required, as interaction and 3D scene display are dislocated, not
using the abilities provided by touch screens. At least, the current
camera position should be rendered in the map view as a feedback.
A better suited approach for this scenario is described by Edelmann
et al. [EFS09], where one finger dragging in the 3D view rotates the
camera without rolling and two fingers allow a 3D translation. How-
ever, to continuously move forward, the user needs a lot of physical
hand motion, i.e. repeatedly perform a zoom gesture. For such an ap-
plication, we expect that a speed control would work better, similar
to how a joystick is often used for navigation. Dragging a finger up
and leaving it there will result in a continuous forward motion. With
a second finger, the other two translational degrees of freedom could
be modified. We have not implemented this idea yet. Of course, a
combination of the map based and direct method makes sense.

Figure 5.15: Campus Information System navigation prototype. In this
sequence, the user taps on the location of interest and releases the finger,
then drags the finger down, zooming in and eventually revealing the bot-
tom floor of the building.

For a campus information system
(see section 6.2.1.1), we designed
a novel way for interacting with
a 2.5D map. The selected hard-
ware in  only supports a sin-
gle touch point. To still be able
to zoom in and rotate the cam-
pus map, an interaction proto-

type was implemented (see images below). With a finger tap, the map
smoothly pans to the center of the selected position, also showing
an arrow as visual feedback (left image). A drag allows to zoom in
(up/down) and rotate around the up axis with the current screen
center as origin (left/right). When zooming in closer, the camera
changes the pitch angle from a top view more to a side view (both
center images). Further motion stops the zoom and peels the floors of
the building from top to bottom (right image). This type of interaction
allows for a direct navigation to a special floor of a campus building
with one tap and one drag.

5.3.3 Gesture and Handwriting Recognition

In some applications it can be useful to use zoom and pan gestures
to control the view and manipulate objects, while also allowing a
handwritten character recognition. An example application was im-
plemented, enabling to furnish a room on a map view. Drawing a
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previously trained stroke inserts a new object, while also allowing
zooming and panning the map or moving and rotating the objects.
Details can be found in the bachelor’s thesis ofGeorgKapeller [Kap09].

5.3.4 Public Touch Interface Design - Lessons Learned

We have noticed, that the best way to introduce a user to a new user in-
terface, is to demonstrate it first and then let the user try, encouraging
or helping out if necessary.
In an unattended setup however, the task is more complicated. One
idea is to show a video of someone using the interface. For our touch
screens, when idle, we show a moving hand that shows possible
interactions, both indicating that it is an interactive and touchable
screen at all, as well as motivating passers-by to also try the system.
A clear feedback of possible or unexpected interactions is important
to keep the user frustration level low. A difficult problem is, that
many touch technologies exist that all have a different way of sensing
objects. To use the display in an optimal way, the user should be
informed what to do. This is especially true for using one or multiple
fingers or the flat hand, or the necessary amount of pressure required.
Feedback on constraints is very important. If the user performs an
action that is not allowed, e.g. moving an object outside a specific area,
the user may not be aware of the constraint, and without additional
feedback he may be left in the dark why the action is not performed.
Instead, some feedback should indicate that the desired action is
recognized but not allowed. An example is our 2D object translation
that builds up more and more resistance and moves the object back
to a valid position when releasing the fingers. Another example
is Ripples by Wigdor et al. [WWC∗09], showing a trembling line to
indicate a strong present force.

5.4 MISCELLANEOUS

5.4.1 IO Device Library

While the Davelib allows rendering of 3D scenes on many VR setups,
the remaining issue for portability is input device handling. To solve
the problem, we designed the IO Device Library which is is still in an
experimental stage.
The idea is that a Lua script is responsible to connect the input and
output devices with the program logic. It can be adapted to each
setup specific device configuration. With the help of the LuaSocket
module, the script can interface with both local and remote devices
via network on its own, without any help of the main C++ application.
Devices that do not already provide a network interface need a relay
server to send and receive data via the network. We recommend
an abstract way, trying to use the intended meaning rather than the
direct input values. An example is a webcam that should be used
as motion detector. A program running on the machine where the
camera is connected computes the amount of motion and sends this
value via network to the Lua script. Another example is a car control
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as illustrated in the figure below. The developer must take care of
exposing application states or functions. Important Davelib states
should also be accessible by the script for a flexible control, mainly
the tracking and projection matrices.
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Figure 5.16: IO device library design considerations with the example of
a car control. a) A common approach where input device support is hard
coded in the application. b) A Lua script is used to process input devices
and to compute the new position of the car. This complete control by the
script may not always work well, collision detection and physics are prob-
ably better handled in the main application. c) Suggested method, where
only the object parameters like the car acceleration are set by the script.

Note that we suggest to treat mouse and keyboard input in a special
way for the following two reasons: First, an application running on a
single PC should not require other programs just to feed it with the
basic input options, and second, such programs globally capture key-
board input and could easily serve as key loggers. The disadvantage
of this approach with special treatment is that different frameworks
like GLUT or SDL have different key mapping definitions that need
to be transformed into a common definition for the Lua script. This is
necessary, as it makes sense to use the same script e.g. for a common
navigation among several programs that may use different frame-
works. Following this example, all Davelib and OpenSG programs in
the DAVE using a flight navigation could use the same script.
Another advantage of using scripting is a much lower inhibition
threshold for a new developer to start adapting the software. Find-
ing and changing a few lines in a short script is much easier than
recompiling the whole application. A disadvantage may be a less
comfortable debugging during development.

5.4.2 System Control

To start and stop programs, the user interface is the most visible, but it
is just a small part. It is not easy to make the underlying system work
well in practice. However, it often seems to be taken as granted and
not relevant for research. We use a small wireless handheld device
in combination with a web browser interface for system control (see
Figure 2.26). At the moment, Python scripts work in the background
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to execute the respective commands.

Remote Configuration. To ease configuration and development at
the HEyeWall, a mouse and keyboard forwarding application is used,
allowing tomove themouse cursor over thewhole tiled display. When
the cursor is moved across a border it jumps to the respective position
on the next computer. Only the computer currently showing the
mouse pointer receives keyboard input. For the DAVE this idea is less
useful as not all screens are visible from the controlling PC. Instead,
a remote connection must be opened for each of the eight PCs.

5.4.2.1 Peripheral Device Control

Turning the DAVE on consists of switching a physical power switch
for the tracking system LEDs and the sound amplifier, and clicking on
a link on a web interface to switch on the projectors and the tracking
system. A set of Python scripts is used to execute respective com-
mands. When using the DAVE, a volume control for the applications
is useful. We wrote a command line tool to get and set the current
master volume in percent by a string. We use this to scale an image
representing a volume bar on the web interface, showing the current
volume. This image as well as an empty bar on the right side are
implemented as server side image maps, so that a click at the desired
position at the bar sets the volume. The modified projectors can be
controlled via a serial interface that can also be used via the web inter-
face. It is important to be able to send control commands from within
the DAVE to correct a wrong projector state, sometimes needing to
read the on screen information.

5.4.2.2 Starting and Stopping Applications

To run applications and calibration programs in a VR environment
like theDAVE,we use Python and batch or shell scripts. Over the years
we had several different script setups, all with different drawbacks.
The current scripts provide functionality to look at the console output
of the programs, which is very useful for debugging or development.
However, one of the scripts needs to be modified each time a new
application is added. With a single error in the script, the whole
system breaks. In an additional html file, the link is added to start
the application. A web server, Python and Linux or Cygwin are the
requirements. We are in the process of writing an application control
systemwithout these requirements and drawbacks. The requirements
are listed below.

Requirements. Different setups for local and remote control on dif-
ferent operating systems should be supported, ideally without an
installation procedure. Examples are the DAVE, the HEyeWall, the
rear projectionwall, themulti touch tables and a demoCD for desktop
setups, that can be distributed e.g. for advertisement. This includes
possibilities to start different tracking systems or switch the display
to a special stereo mode, depending on what is required by each
individual applications. Also some applications require environ-
ment variables to be set. In some cases, multiple programs must be
launched in the correct order or with a delay. A very useful feature
is a logging mechanism to somehow be able to see console outputs
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of the program, that often contain valuable debugging information.
In many setups, we only use one application as the main application
that should be given all resources, like the graphics hardware. Thus,
all other applications that could take up such resources should be
stopped automatically upon starting the next application. For some
applications, the same program must be executed on each PC, while
for others like OpenSG, server and client applications have different
names and parameters.

Implementation. We have already partially implemented such an
application, the VRAppStarter. It acts as a web server for a universal
way to send the control commands. We plan to use the same con-
figuration file for both specifying location and startup parameters
and arguments as well as for generating a graphical interface with
a website automatically. In that way, to add a new application, only
a single file needs to be modified. Our new approach is more user
friendly, because unknown commands are ignored and an error can
only affect a single parameter or application. By running an instance
on eachmachine, remote execution is possible. Starting an application
on one machine makes it possibly to relay the command to a cluster,
where the same or a different executable command may be executed.

Useful Ideas for FutureWork. Another useful feature for operators
is an always visible status display of the system components. A
number of small green dots is enough to indicate that everything
works as expected. Each machine could check all its crucial devices
and update its status every few seconds. In case of the DAVE, this
includes whether all machines can be reached via network, if the
sound card and joystick are detected and if the tracking server and
the file server are running.

5.4.2.3 Unattended Kiosk Systems

Special considerations must be taken into account for devices and
software that shall run 24/7 in a public space. The hardware and
operating system should be capable of automatically starting up after
a power cut and even reboot in case of a failure. For our experimental
purposes, we use standardWindows, which is not well suited for such
setups. To prevent update and popup windows appearing, we set our
application window to the topmost window order. The access to the
PC is physically blocked and we restrict touch input to just work with
the desired software, not with the operating system. We implemented
Watchwolf, a watch dog application for the purpose of surveying the
application status. The application must regularly report to Watch-
wolf, otherwise it is assumed that the program is crashed. In that
case it is killed and then restarted automatically. Also, the current
status can be send by email. A final option is to automatically reboot
the PC either at night or when repeatedly detecting a problem.
For the user, a good feedback is essential, as there is usually nobody
around who could be asked. Bad examples are far too often present.
Examples are slow or long processing or network access or update
of the screen without user feedback, that e.g. a click was actually
recognized and is being processed. It is also relevant how important
the system is for the user. If an advertisement system does not work
well or is out of order, this is oftenmore acceptable than consequences
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of a failing information system or ticket vending machine. Too often,
vending machines serve as negative examples, not allowing to go
back one step, not providing a good explanation, or imposing unclear
limitations on the type of accepted payment. Especially if there is no
alternative to the machine, the user frustration level can easily rise. In
conclusion, it always should be considered that a kiosk system may
fail. As a consequence, important systems often have a telephone
hotline for support or to report a broken system.

5.4.3 The Ideal Interface

Which interface is ideal and will be used in the future? Researchers
hope that with 3D interaction in a VE, tasks can be accomplished
better. However, many aspects show that it is very difficult to actually
find a useful application for the suggested solution. There is evidence
that with current technology, a 2D interface is more effective for many
tasks and that reducing the degrees of freedom often helps [BKL∗09].
However, there seems to be the assumption, especially by non-ex-
perts, that 3D interfaces are or will be superior. An often mentioned
example is the movie “Minority Report”, where the main character
stands in front of a huge holographic display and interacts by waving
around with his arms. Many people having seen that movie seem to
assume that once such technology is available, everyone will want to
use that kind of interface. A critical view quickly reveals that such
an interface seems much less ergonomic than a standard desktop
setup. This was even examined scientifically [BIB∗09]. Bowman et
al. provide an interesting list of suggestions for future research in 3D
user interfaces [BF05], [BCF∗08].

5.4.4 Usability Studies

To verify that a newly developed interface performs better than exist-
ing methods, usability studies are carried out. It is very difficult to
design them in order to get representative and useful observations.
Even then, often the findings are hard to generalize, i.e. for another
application or setup. Also, probably due to simplicity, a travel tech-
nique is evaluated e.g. by the task to move along a maze or corridor
as quick as possible. If this really was the intended application, users
could be greatly assisted for such a task. Instead, test scenarios should
resemble closer to the target application. Usually such studies are
conducted at one research lab with the available and suitable hard-
ware. There are many variables that are likely to have impact on the
results, such as the latency and accuracy of a tracking system and
display hardware. The performance may be very dependent of the
exact implementation and choice of parameters. A sensible idea to
improve the expressiveness of such investigations is to collaborate
with multiple research groups at different locations to first develop
independent solutions and then collect the best ideas. Finally, the
same concept and variations may be tested on all setups of the differ-
ent locations. However, this requires a large effort. A way to realize a
similar idea is a public contest or challenge, as sometimes seen in the
context of a conference.
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6
Applications

Having discussed all necessary technologies, both our imple-
mented applications as well as concepts and ideas are pre-
sented. Not for all applications a fully immersive setup is

the best choice. Robertson et al. discuss the advantages of non-im-
mersive Virtual Reality already in  [RCM93]. We thus split the
applications into two groups, according to how well they are suited
for either non-immersive or immersive setups. Some are just promis-
ing conceptual ideas, others are mature applications. The insights
and lessons learned are a valuable source of information for designing
new applications. A brief overview on the areas of VR applications is
given first.
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6.1 RELATEDWORK

Interactive exploration and visualization of data is already a success-
ful application of VR and is used to gain insight into, understand or
verify the data. This may be an important part in a decision process.
Annotation, modification or even creation of data are interesting but
more challenging options. The following subsections list common
areas of application.

6.1.1 Large High Resolution Screens.

Especially for large amounts of data, a large number of available
pixels is useful. Applications, where scrolling is often necessary on
a desktop setup, may profit from the simultaneous overview of the
data while still showing the details.
Examples for such large amounts of data can be found in medical
imaging, visual analytics and data mining.

Colocated and Remote Collaboration. A large display may ease
collaborative situations compared to a desktop setup. Interaction of
multiple users with equal rights may be accomplished e.g. with multi
touch systems.
Video conferencing has the potential to save a large amount of time,
money and environment pollution. The acceptance of these systems
is not very high. Prototypes exist trying to avoid current problems,
like enabling eye contact.

Mapping and Charts. Maps, charts and graphs profit from a large
number of pixels. In case of static information, printed versions may
still be far superior in terms of resolution.
Geographic information systems (GIS) may be visualized. For 3D
GIS, AR applications are developed for inspection on site.

Command, Control and Surveillance. Oil and gas, power, home-
land security, traffic control and facility control are examples that may
require large displays.

Consulting and Sales. For a sales conversation, a multi touch table
setup may be useful to show all options and results of options to the
client, e.g. for cars and bank contracts. It is a collaborative setting
that in addition should convey competence and innovation to the
customer.

6.1.2 Immersive Setups.

The CAVE was developed with the hope to find a much better way to
visualize scientific 3D data, such as simulation results. Teleconferenc-
ing and medical visualization were also among the early ideas but
showed to be less successful in immersive setups. At the time, the
hope was to better understand abstract data when being immersed in
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it. Experience shows that virtual scenes representing the real world
are much more successful.

Entertainment and Games. Multi screen setups, stereoscopic se-
tups and head tracking are slowly making their way to the gaming
market. However, such setups are still only used by a small number
of enthusiasts. 3D input devices however have gained a lot of atten-
tion with the console market, mainly the Wiimote by Nintendo, the
PlayStation Move controller by Sony and the kinect by Microsoft.
Simulators for motor bike and car racing, skiing etc. sometimes come
with a motion platform and are installed in some game halls.
Virtual communities exist, even though they are usually not used
with immersive setups.

6.1.3 Applications for Both Immersive and Non-Immersive Setups

Some areas of applications may profit from a variety of different
advantages on both types of setups, as listed below.

Biology andChemistry. Bioinformatics, computational biology and
computational chemistry, comparative genomics and molecular dock-
ing and rendering are used.

Scientific Visualization. Vector data such as flow simulations can
be analyzed. Interactive placement of clipping planes or virtual smoke
particles help the visualization. Flow visualization from computa-
tional fluid dynamics (CFD) [PPF∗].
In astronomy and astrophysics or atmospheric modeling and predic-
tion, a 3D visualization may be advantageous.

Architecture and City Planing. Indoor and outdoor architecture as
well as urban design are obvious and well suited applications.

Engineering and Manufacturing. Virtual assembly tests and visu-
alization of simulation data are important. Industrial design or vehicle
prototypes may be visualized. Assembly and maintenance instruc-
tions often employ AR rather than VR technology.

Psychological Experiments. Simulations are used to study humans
and human behavior, both for basic research as well as in order to
optimize systems and products. An example is the automotive sector,
e.g. testing visibility and reachability with new dash board designs.

Therapeutic Applications. Exposure therapy is used to treat pho-
bias or PTSD (post traumatic stress disorder). As an example, veterans
can be faced with critical situations of a battle to process traumatic
events in a controlled way. VEs are used for rehabilitation and may
increase the motivation of patients, e.g. when exercises are hidden in
games.

Education and Training. Dangerous or expensive tasks can be
trained in a simulator. Medical doctors, safety and military staff,
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pilots or even astronauts can use simulators to prepare for the real
situation.
Flight simulators are a well known application for such safe and in
the long run more economic training.
Mathematical geometry and electromagnetic fields can interactively
be explored and manipulated in an immersive setup, hoping to better
understand the effects which may otherwise be hard to imagine.

Medical Visualization. Medical visualization and editingmay help
to prepare, plan and guide operations. Teleoperations allow experts
from around the world to perform critical tasks.
A 3D rendering of medical data in a CAVE was mentioned as a possi-
ble application. However, experts usually prefer visualization on 2D
monitors, often looking at 2D slices of a volume rather than using 3D
volume visualization.

Cultural Heritage and Archeology. Current sites of interest may
be 3D scanned or past sites may be reconstructed. The inspection and
presentation may profit from an immersive setup.

Virtual Tourism. A 3D visualization may be used for travel planing
or general information. The next step is virtual tourism, replacing
real travel by inspection of sights on the display.

Demonstration and Public Relations. VR and related display tech-
nology is often used to show innovation and to present products in a
good way.

Arts. An early example of art for a CAVE that was first shown in
 is Crayoland [Pap98], showing a non photorealistic world with
colorful hand drawn textures.

3D Formats. A big issue for 3D applications is still the 3D format to
describe the content. There is no single format that is suitable for all
kinds of applications. New technological developments should also
be reflected by the 3D format. Formats that support many features
requiremore complex processing, so that other formatsmay be chosen
in favor of efficiency. X3D and Collada were developed as universal
formats. X3D is an XML format and can easily be extended for special
purposes. In that case, at least the compliant parts can be read by
other applications and no new format is necessary.

6.2 NON-IMMERSIVE APPLICATIONS

6.2.1 Touch Screen Applications

Touch screens for a PC are a relatively recent way of interaction to
most people. Some screens offer support for multiple pointers at a
time. A sensible, intuitive and effective use of multi touch input is a
challenge.
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6.2.1.1 Public Information Systems

We worked on single touch and multi touch screen applications in-
tended for unattended information screens in public. This work was
done at the HITLabNZ.

Figure 6.1: New Zealand pavilion at the World Exhibition 2005 in Japan.
Left: The inner part consisted of five large multi touch screens. Right:
Fascinated users playing with the touch screen. Images courtesy of HIT
Lab NZ, University of Canterbury.

Aichi. We have realized several information systems intended for
use in public. For the New Zealand pavilion of the World Exhibition
2005 (jap. Aichi bampaku) in Japan, we developed a touch screen setup
and presentation software providing information on New Zealand. A
rear diffused illumination setup is used as described in section 2.3.2.1,
unfortunately with the screens spaced further apart than we would
have liked.

Figure 6.2: Screenshot in idle mode. When nobody touches for some 10
seconds, an animation of a moving hand indicates how and where to drag
the icons. The icons move from left to right on curved paths, therebymov-
ing up and down. They have inertia and can be flicked across the screens.
Background images changed from time to time, professional media was
shown with video clips or slide shows, depending on the tool the icon is
dragged to. Image courtesy of HIT Lab NZ, University of Canterbury.

The screens show icons floating
from left to right across the linked
screens. Users can touch and
drag an icon around. Dragging
an item to an audio or video sym-
bol triggers a sound or video dis-
play. We added inertia for a more
enjoyable experience, as well as
glitter particles for visual feed-
back of a recognized touch. A rec-
ognized grab or drag is indicated
by an animated enlargement of
the icon, its change of motion and
by repelling forces to other icons.
It is possible to push other icons
away and off their original trajec-
tory. After a few seconds of in-
activity, an artificial hand outline
is superimposed, demonstrating
how to drag an item to one of the
media players. This is used to
make clear that the installation
is interactive and encourages to
directly copy the visual instruc-
tions. The icons also move up and down along a wave like trajectory
in order to use the whole screen and to attract attention while making
sure even small children can reach any icon once in a while.
It may not be obvious that screens are interactive touch screens, there should
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be several visible hints encouraging people to interact. A clear touch feedback
should be given so that the users know whether the touch is recognized.
Objects with physics behavior are enjoyable to use.

Figure 6.3: Shopping mall informa-
tion system in 2004. This screen
shows a zoomable mapwith a shop
index and life bus data for public
transport. Image courtesy of HIT
Lab NZ, University of Canterbury.

Mall Information System. We looked at the potentials of electronic
mall information systems and installed a test setup in a shopping
mall for two weeks. Furthermore, a survey was conducted to help to
decide on useful contents on such systems.

Figure 6.4: Zoomable map with real time bus information. A moving im-
age of a hand illustrates possible interaction and animates passers-by to
try themselves (left). Zooming closer, shop names are displayed, also al-
lowing to only show the names of a certain category of shops (right).

Figure 6.5: Left: The current weather and radar satellite imagery aswell as
a forecast. The information is automatically updated by downloading and
parsing data from three different web servers. Slowly moving clouds are
shown in the background. Right: Photos of the historical development of
the mall. More photos can be seen by panning the photos or dragging the
slider on the time line.

Again, for an idle screen we use an animated photo of a hand showing
what to do. In addition, we use a pictogram and the text touch screen
to show its capabilities. We also use the sparkling glitter particles as
a touch feedback, in addition to an auditory signal generated by the
hardware. A selected menu button is highlighted with a blue glow.
For burn in prevention on the plasma screen, the whole content very
slowly and imperceptibly moves around the screen by a few pixels.
The content consists of the following pages:

• An interactive zoomable map, featuring realtime bus informa-
tion, a search function and a shop index.

• Weather information with the current situation, the forecast
and a satellite image, collecting the data from three different
websites.

• Historic information of the mall, realized by photos arranged
at a time line with a slider.

• Fun applications: a Breakout clone and an image warping of a
webcam image.
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Figure 6.6: Games. On the left, a life stream from a webcam can be dis-
torted, using a deformable mass spring grid that slowly recovers to its
original state. The right shows a breakout game. Both games were even-
tually not used in themall, as kidsmay have blocked the screen by playing
the games.

Figure 6.7: An early concept with
a large screen (top) and the actual
installation with a much smaller
screen (bottom).

Figure 6.8: Results of a survey in the mall, asking people if they would
like to see the respective content on the information screen.

Results and insights from the survey in  are, that people did not expect
the screen to be an interactive a touch screen, older people think they cannot
use it, and in general people do not expect to find useful information on such
a screen. Nowadays, many people have powerful personal mobile devices and
thus, this concept of information screens looses importance for some of the
provided information.
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Campus Information System. We also thought of installing a cam-
pus information system with an interactive map as the main compo-
nent. The motivation is that compared to a static, printed map, the
screen has the potential to always show up to date information, more
meta data and an event calendar.

Figure 6.9: Campus Information System sketches.

6.2.1.2 Multi Touch Photo Table

A well suited demo application for multi touch screens is a photo
table, where objects can be moved, rotated and scaled. Also, other
multimedia objects like videos or PDF files or any applicationwindow
can be used. Rotating the content is especially important for a table
setup, with users standing on any side of the table. The algorithms
for interaction are described in section 5.3.1.

Figure 6.10: Our 2D and 3D object manipulation demo software on two
different multi touch tables.

Rotating Arbitrary Windows. As today’s operating systems do not
support a rotation of any application window (except for the Compiz
window compositor for Linux), we partly implemented a concept
using a VNC or RDP connection to a remote application [USOF09].
Thus, we render the application window content as a texture within
our own application. Also, it is possible to transform the touch input
and forward it to the application, transforming the input coordinates
accordingly. We have not completed the implementation for remote
application windows yet.
Hardware related sensing errors and tracking errors lead to unwanted effects.
Users may not use the screen correctly, e.g. touching with the whole hand
when a single finger should be used. Soft constraints are helpful for users to
understand that an action is recognized but not permitted. The photo table
application can be used to both play around as well as demonstrate a useful
application.
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6.2.1.3 Interactive Floor Projection in a Public Space

Figure 6.11: Left: Sketch of a game using a floor projection. Players try to
reduce the free gray area, in that balls can move, by walking over the map
and thereby buildingwalls. Unfinishedwalls (red) are broken by the balls
and the player may be penalized. Right: Sketch of an interactive, virtual
aquarium. The fish may react on passers-by by following, inspecting or
fleeing from them.

We had the idea for an interactive game with a floor projection, which
has not been implemented yet (left image above). The same principle
is now used in advertisement. When somebody walks over an image,
it reacts with some image effect, e.g. by burning away to show the
next image, or with showing water ripples.

6.2.2 Computational Photography

A relatively new name for certain applications of digital photography
is the field of Computational Photography. We mostly use the term for
applications where multiple photos with different settings are com-
bined to overcome hardware restrictions of a camera. This includes
the lens, the aperture, the imaging chip but also the camera position.
Most applications in this field would greatly benefit from direct cam-
era control, but on commercial photo cameras, options for customiza-
tion of capture processes are quite limited. However, there is a small
community that reverse engineers firmware by experimentation and
analyzing updates. The Canon Hack Development Kit (CHDK) provides
control for many operations. It even allows scripting and is available
for many of the point and shoot models by the company. A more
scientific project is the Frankencamera [ATP∗10], a mobile camera hard-
ware platform with an open access, especially made to enable and
encourage research in Computational Photography.

6.2.2.1 Image Alignment

A common application are photo stacks. They can be used for high
dynamic range (HDR) images, focus stacks or noise reduction. While
such stacks require exactly aligned images and are usually supposed
to be captured with a tripod, this requirement is a major drawback
for the practical usage, as most photographers do not always carry
a tripod with them. For handheld panoramas or exposure brackets,
multiple images should be overlayed so that in overlapping regions,
pixels fit perfectly. Due to camera movement, when shooting without
a tripod and a panoramic head allowing to rotate the camera around
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the nodal point, no simple and perfect alignment is possible. In
addition, with slightly moving objects like tree branches or clouds,
visible ghosting artifacts may result. With a following automatic
photometric estimation and correction, this may even lead to further
errors in the processing chain. Thus, we looked at possibilities towarp
image stacks acquired with a handheld camera to produce aligned
images for subsequent image stack algorithms.

Automatic Optical Flow Based Image Alignment. Following the
idea of Kang et al. [KUWS03], we also tested automatic image align-
ment using optical flow. Small misalignments in textured areas can
be corrected well using optical flow. However, erroneous matches
may also be produced, especially in low textured regions, leading to
visible artifacts. Further constraints are necessary for smooth results
also allowing sharp edges at depth discontinuities. Such regulariza-
tion may be achieved with the TV-L1 energy functional, as described
in [ZPB07] by Zach et al. We have not implemented this yet.

Figure 6.12: Panoramic stitching with a slight camera motion. Without
correction, ghosting artifacts appear in the grass area (left image). The
optical flow is computed (center image ) and used to warp one image to
eliminate ghosting (right image).

Larger scene changes are not handled very well and lead to visible
artifacts. In the example below, local rotation occurs. To correct this,
rotation should be included in the model that is used for regulariza-
tion.

Figure 6.13: Source images or blending without warp!! To align exposure
bracketed images for high dynamic range fusion, our simple local model
is not good enough in this case. The horse head rotated significantly and
errors occur with both of our approaches (photos by [Sze06]).

A different application using the same optical flow computation is to
produce a motion blurred image from two sharp input images. This is
useful for stop motion animations or for animated renderings, where
physically correct computation motion blur increases the rendering
time by a large amount.
More details can be found in the master project of Markus Rum-
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pler [Rum09].
Automatic local image alignment works well for most parts of the image,
when using images with a similar dynamic range. To avoid very visible
outliers, a regularization is necessary. Exposure stacks are not well suited
for automatic optical flow based alignment.

Manual Image Alignment with Freeform Deformation. To avoid
problems that occur with the automatic approach described above,
we also implemented several free-form deformation algorithms and
an editor to manually align image stacks.
Currently, only a simple planar projection is used. For panoramas, a
spherical projection should be implemented. A radial lens distortion
is included, allowing us to calibrate and reuse lenses. For alignment,
the image opacity can be changed, the colors of an image can be in-
verted and an edge filter can be applied. These visualization options
greatly simplify alignment of differently exposed images. In contrast
to existing solutions, the program shows the deformation in real time,
a simple mouse drag adds a new control point and the result is imme-
diately visible, allowing a very fast registration. The most important
points for future improvements are an automatic fine tuning of control
points as well as a spherical projection for panoramas.

Figure 6.14: Photo Distorter. Top row: Rotation, translation and scale are
adjusted, defined by two control points. Some ghosting remains (left) vs.
free-form deformation with more control points (right). The two small
images on the bottom left are the original input images, the bottom right
shows the final tone mapped result using the free-form alignment.

The tool is available as open source under the name PhotoDistorter.
More details can be found in the bachelor’s thesis of Georg Mar-
ius [Mar10].
A real time feedback of the image alignment is valuable and allows a fast
manual registration and simultaneous quality control.

6.2.2.2 Motion Blur Magnification

Another idea for using multiple aligned images is what we callmotion
blur magnification. An example is a photograph in daylight, taken with
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a point and shoot camera that cannot close the aperture far enough
for a desired long time exposure. Instead, multiple photos or a video
can be taken even without a tripod and the motion can be analyzed
to then blur the reference image along the local motion direction. In
that way, an effect similar to a long time exposure can be achieved.
This is only a concept, we have not implemented it yet. However, to
show the idea, we prepared the following mockup images.

Figure 6.15: Mockup images demonstrating the idea of Motion Blur Mag-
nification. The left image of each pair is the original image, the right im-
age shows the possible result when combining multiple shots to repro-
duce an similar effect as a long time exposed image.

6.2.2.3 Face Distortion Correction

Figure 6.16: Face Distortion Correction for unflattering close up shots.

For close up photos of a face, well
known features like the nose ap-
pear in an unfavorable way dis-
torted due to perspective. A pho-
tographer can usually step back
and choose a better suited focal
length to not run into this prob-
lem. However, web cams or mo-
bile cameras for video calls are
usually placed relatively close to
the face. To mostly correct this
effect in software, we suggest the
following system.
A face detection fits a 3D head to
the image so that with a known
focal length of the lens an esti-
mated depth is obtained. The
depthmap is blurred and its mag-

nitude and gradient is used to warp the image. We think that espe-
cially mobile video calls may benefit from this idea, as mobile devices
are usually hand held at a comfortable distance, resulting in notable
distortions. With face tracking an automatic distortion correction may
be applied. Our prototype implementation uses a manual registration
of the 3D head model.
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Figure 6.17: Original photo (left) and corrected version (right). Note espe-
cially the size of the nose.

6.2.2.4 Zoomable Images

Figure 6.18: A commonway of visu-
alizing large zoom amounts, espe-
cially useful for static images like
print media.

Nowadays it is easily possible to interactively display gigapixel images.
Zooming by a large factor and panning the image is an important ap-
plication, considering that computer displays can only show a small
fraction of the data at the same time. For the application of photo-
graphically acquired images, the creation requires the combination of
many tiles and is still a long or expensive process. On the other hand,
the increasing optical zoom ranges of consumer cameras of over 30×
nowadays allow consumers to easily take high resolution zoomed
in inset photos together with a wide angle photo of the same scene.
Often, there are some obvious points of interest like a distant village
or mountain top. It is not so important to acquire the whole image
in a high resolution. Only little work has been done to appropriately
display the high resolution photo as an inset. Automatic stitching
is possible, but the transition from high resolution content to low
resolution content may be annoyingly apparent, especially when the
resolution difference is high. When gradually alpha blending over a
large area, the transition is less visible, but a lot of the high resolution
information is lost and ghosting artifacts may result. To overcome
these problems, we introduce a different, novel approach by grad-
ually attenuating the maximum image frequency. We achieve this
with a Gaussian blur filter with an exponentially increasing standard
deviation across the transition.

1

0
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x x x
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Figure 6.19: Two sample images with transitions from the high to the low
resolution content. From left to right: hard transition, standard linear
blending (alpha blending) and our method. The plots below show the
alpha values for blending in the left and center and the standard devia-
tion (in pixels) used for the Gaussian blur on the right. The images have
a width of 1024 pixels.

6.2. NON-IMMERSIVE APPLICATIONS 159



Alignment and Detail Generation. At the moment a manual align-
ment of the images is used. An automatic alignment is possible, an
approximate scale can be extracted from the focal length stored in the
EXIF information of the photos. We avoid possible problems with
different exposure or white balance by replacing the low frequency
content of the high resolution image by the low resolution image. We
do this by blurring both images with a large radius and then adding
the difference to the high resolution image. With the steps described
above, we can handle hand held photos with different exposure and
white balance settings.
To enlarge the areawith high resolution information, we implemented
a simple detail transfer (see Figure 6.22). We compute a good cross
correlation based match of random position pairs and copy high reso-
lution patches. However, we recommend to use a more sophisticated
approach like the one described in [FJP02] by Freeman et al. to get
more plausible results.

Figure 6.20: Gabor convolution ker-
nels used for local frequency analy-
sis.

Transition. To help understand the present image frequencies
across a transition, we looked at sine kernel responses with varying
frequencies (see below). As kernel we use the sine function multi-
plied with a Tukey window function. Similarly, we generate a rotated
version by 90 degrees, resulting in the Gabor kernels shown on the
side. For each pixel in each row in the image, we add the absolute
values of the convolutions with each kernel. The figure below shows
the input images in the first row and the result in the second row,
with kernel dimensions of dλe× dλe. For the example images, we
use a high resolution image and generate a low resolution version by
applying a large Gaussian blur. Note that this is an approximation, as
common upscaling algorithms will produce slightly different results.

Hard transition Alpha blending (linear gradient) Blur (linearly increasing radius) Blur (exponentially increasing radius)
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Figure 6.21: Frequency analysis for the market image and for an image with a sine with exponentially increasing
frequency. The rightmost column shows our suggested method described below.
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Transition with Alpha Blending. As expected, the linear alpha
blending frequency response in the figure above shows, that high
frequencies are present almost across the entire transition and then
quickly drop to zero on the right side, leading to a relatively hard
transition in the frequency domain. Especially in the middle of a
gradual transition, ghosting appears, i.e. edges look foggy.

Transition with Frequency Blending. Our approach is to gradu-
ally suppress high frequency details across the transition. We use
a Gaussian blur with an exponentially growing standard deviation
(with a kernel radius of 2.5 times the standard deviation). We first
tried a linearly growing radius and found, that the blur increases
too sudden and high frequencies present drop to quickly at the start
(left side) of the transition. We found that an exponentially growing
standard deviation works better (see both right columns in the figure
above).

High resolution input (1024x1024)

Low resolution input (40x40)

Superresolution

Transition map

Result

Figure 6.22: Transition generation workflow. Aligned and photometrically corrected low resolution and high
resolution images are the input images on the left. The center shows and intermediate result where high resolu-
tion patches have been copied to areas with similar low frequency content. The transition map is derived from
the blurred alpha mask of the high resolution input image and controls the amount of blur. The final result is
shown on the bottom right.

For our images in sRGB space we approximately linearize with a
gamma value of 2.2 and transform the result back appropriately. To
compute the required standard deviation of the Gaussian from the
magnification factor, we found that a factor of 0.5 produces a blur
that is similar to the magnified low resolution content, i.e. σ = 0.5 ·
magni f ication.
Realtime visualization software often uses hardware magnification
with linear interpolation. For a large magnification, the transition
between the Gaussian blurred image and the linearly interpolated
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image will be slightly visible. Also, the high resolution inset is in
general not aligned to the low resolution coarse pixel grid. To avoid a
visible seam, we alpha blend the final result with a smooth gradient
over a small distance.

Comparison to Irregular Masks. In the photo zoom project, Eise-
mann et al. suggest to use irregular masks [EESM10]. The idea is
to get a sharp transition at object boundaries and hence avoid the
ghosting artifacts. We implemented an algorithm producing similar
irregular masks to further analyze this solution. We also use a cost
function which is a constant plus a weighted edge value. The edge
value is computed from the maximum absolute sobel egde value of
each color channel, setting low edge values below a threshold to zero.
Wemanually tuned the parameters to get a goodmask. The figures be-
low show the generated mask and zoomed crops respectively. While
the idea works well in the cropped region in the figure below, the
cropped regions in Figure 6.24 show ghosting at the cars and a visible
edge caused by a roof on the high resolution region boundary.

Figure 6.23: Aerial image of a city. The left columns shows the complete
image with the respective maps, the right columns show a zoomed region
close to the center. From top to bottom: hard transition, linear blending
with smooth transition, our method with exponentially increasing blur,
linear blending with irregular mask, blur with irregular map. The image
is provided by the city of Braunschweig.
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We also tried to use the same mask as an input to our algorithm. To
avoid blurring with a large kernel over masked out details, we could
multiply the Gaussian weight with the mask. Instead, we used the
GIMP Focus Blur plugin which behaves similarly. While the results
do not look very convincing, it may help at a coarser level to hide the
regular, usually rectangular border of the high resolution content.

Figure 6.24: Two more closeup views, comparing irregular masks/maps
(right) for linear blending (left) and blur (center). Artifacts are visible in
all cases. Top left: hard edge of a roof. Top center: some trees are only
partially very blurry. Bottom left: cars at the bottom suffer from ghosting.
Bottom center: only some parts of the house are very blurry.

We successfully avoid ghosting artifacts completely. The image be-
low shows an interactive example with two blended high resolution
insets. The first has a zoom factor of 5.6, the second has an additional
zoom factor of 3.3 (18.4 in total, i.e. 18× 18 high resolution pixels
correspond to one low resolution pixel). As the images are scaled
down but still have about 1.5 megapixels, this is only visible at a high
magnification, please use the electronic version of this document and
zoom in. Common current PDF viewers seem to only interpolate
using the nearest neighbor, leading to pixel artifacts at high magnifi-
cation levels. Even when explicitly searching for the transition, it is
not easy to find. For reference and to ease inspection, the right image
visualizes the position of the three images by inverting the color of
the middle image.
We also display our zoomable images on our multi touch setups (see
section 6.2.1.2). To prevent images accidentally being scaled too large,
we use a maximum scale factor. We extend this by adapting the
maximum scale factor to the dimensions of the smallest zoom region,
thus allowing to zoom in far enough.
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Figure 6.25: Interactive zoomable image. The location of the high resolu-
tion images is shown in the crop on the right. Note that for better com-
pression and unknown magnification algorithm of your PDF viewer, in
this example we do not blend the outer border.

We have not yet considered multiple partially overlapping images
with different resolutions.
For more details, please refer to our publication [LF11a].
As much high resolution information is lost for gradual transitions, the high
resolution region should be extended before with super resolution approaches.

6.2.3 Visualization and Rendering

6.2.3.1 Preview Visualization for 3D Scanner

Figure 6.26: Top: Dynamic octree
with bounding volumes of differ-
ent LoDs. Bottom: a test with col-
ored particles.

For the scene scanner by IRL, we conducted early research in .
The 6 DoF tracked handheld 3D scanner is equipped with a laser
line scanner for depth and a color camera for texture. By swiping
the scanner over static objects, they are scanned from that point of
view. In a postprocessing step, all recorded data is transformed into
a high quality point cloud or surface. However, during scanning, a
fast preview is useful so that the operator can see which parts of the
object are already scanned and which are still missing. Also, visual
feedback on the quality or resolution of the surface is practical. The
research problem is to find a way to show a preview with interactive
frame rates, even after many minutes of scanning. Also, the scanning
volume is not known in advance and should adapt to the measured
points.
Our solution is a dynamic octree with a constant maximum number
of points. It can expand its size dynamically when necessary. Also,
resolution can be decreased by merging branches, allowing to de-
crease the number of points. One idea is to decrease resolution of old
branches first. The figures on the side show a test case with an ever
growing spiral.

Sample selection. To reduce the amount of input data, only a few
evenly spaced samples of the scan line are chosen. Their resolution
in world space is estimated with the maximum distance between
scan line and temporal neighbors, using points of several scan lines.
At a depth discontinuity a few samples in its neighborhood will be
assigned a low resolution, encouraging the user to scan this area
again. Vertices that are far away from others of the same scan line are
considered as outliers and are ignored.
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Point Cloud Data Structure. Grid based and unstructured hierar-
chies have been considered. A self growing, regular cube grid is
chosen as data structure to provide fast update of existing points as
well as Level of Detail (LoD) and culling support. Information in such
a cubic cell consists of

• The 3D position quantized to a mm grid
• The average color
• The average normal, if available
• The minimum resolution
• A 3D array of pointers to a subdivided structure of that cell

Point CloudManagement. When adding a point outside of current
boundaries, the maximum dimensions grow automatically so that
a new top level is inserted containing the old one as a sub level. An
update of existing information is performed if the new information
has a higher resolution than the existing one. To preserve a high
frame rate, the number of subdivided cubes is limited. High resolu-
tion information is therefore deleted over time, preferably at random
positions far away from recently scanned areas.

Display. For display, depending on the position of the camera, suit-
able levels of detail are chosen and culling is performed for objects
outside the viewing frustum. When traversing the hierarchy, invisible
cubes are ignored (hierarchical view frustum culling) and depending
on the projected size, just a certain level of detail is rendered (detail
culling) while reducing aliasing artifacts at the same time. Only the
GL_POINT primitive is used, as more sophisticated splatting is more
expensive andwas hard to implement at the time. Another interesting
problem is camera placement. We envisioned several possible ideas,
including a viewpoint from the handheld scanner, a viewpoint from
an estimated head position of the user, and a viewpoint from above
for a top view.
Point clouds are very well suited for interactive LoD algorithms.

6.2.3.2 Video Surveillance: Autovista

Figure 6.27: AUTOVISTA: A CCTV
surveillance system with a 3D
model to provide spatial context.

Video surveillance operators are faced with the problem, that more
and more camera images are available and they cannot look at all
images simultaneously. In the Autovista project (Advanced Unsu-
pervised Monitoring and Visualization of Complex Scenarios) we
looked at how to help the operators. With our project partners, we
use Computer Vision algorithms to analyze each image in real time
and automatically signal unusual events. Also, person detection is
performed. Our task in visualization is to show an overview of the
situation, including the results and details on request. A 3d model
is of the facility is used to show the information in its spatial context.
At a distant view, an overview is possible with a simplified rendering
of high level information. Zooming in, camera images are visible that
are projected back onto the 3Dmodel geometry, especially facilitating
the task of following a person from one camera image to the next. To
be able to simultaneously display the large amount of information,
it is helpful to have a display with many pixels available. Thus, we
implemented this application for our high resolution Graz HEyeWall.
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Figure 6.28: An operator looking at an overview of the whole scene.

Figure 6.29: Different levels of detail are shown. Left: The buildings
are abstract and semi transparent. The surveyed areas are marked in yel-
low and red dots show detected persons. Right: The buildings are de-
tailed and camera images are projected from the camera positions (yellow
spheres) back onto the geometry. A detected person is additionally drawn
with a rectangular billboard. When zooming, the the levels of detail blend
continuously.

One challenge for scaling the prototype system with few cameras to a
large system is the limited video bandwidth. We started development
of video servers, each connected to about a dozen cameras, capable
of dynamically scaling down several video streams to the currently
necessary resolution and sending DXT1 compressed streams via UDP
to the renderingmachine. We also implemented frame rate limitations
to further reduce the bandwidth. Unfortunately, the compression and
high bandwidth network transmission was never finished, as in the
course of the project, only previously recorded data by few cameras
was used. For an unoccluded view of multiple levels of a building,
we experimented with explosion views, i.e. separating the levels and
moving them away from each other. This successfully avoids overlaps
but alsomakes it harder to track people across levels. Formore details,
please refer to our publications [LSHF09] and [RSW∗11].
In combination with facility control, we see a great potential to facilitate
the task of the operators. Challenges remain to be solved, both in Computer
Vision algorithms as well as high performance video transmission. The
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realization of some good ideas is prohibited by law for use in public spaces,
in order to prevent misuse.

6.2.3.3 Realtime Raytracer

A simple GLSL raytracer was implemented to both showcase the
Davelib and also to use the framework for educational purposes in
the lecture on photo realism in computer graphics. With a working frame-
work and the primary ray already set up, students can easily test and
experience ray tracing in real time, implementing ray intersection
algorithms for several primitives, as well as caring about shading and
lighting. In the meanwhile, NVIDIA released OptiX [PBD∗10], an
interesting and powerful framework as an alternative for such an ap-
plication. In section 6.3.5 the usage in immersive setups is described.

Figure 6.30: A simple realtime raytracer on the HEyeWall, here still with
a few clipping artefacts due to the calibration matrix.

The concept of raytracing is well suited for educational purposes. A funda-
mental understanding of the algorithms and problems is conveyed to students
in a fun way of an own implementation.

6.2.3.4 Miscellaneous

Here, a few further visualization applications are presented that are
not described in detail.

Figure 6.31: 3D visualization for au-
tonomous navigation with the TU
Braunschweig.

Visualization of Sensor Data: Visufusion. In a project for au-
tonomous navigation of cars with the TU Braunschweig in , we
helped with the 3D visualization of previously recorded sensor data.

Figure 6.32: Interactive height field
visualization for illustrative pur-
poses.

Height Field Visualization. The real time visualization of height
fields is a special module used in the presentation viewer (see sec-
tion 6.2.4.3, used for illustrating image processing results.

Wavelets on a Sphere. Motivated by results with sperical wavelets
by Schröder et al. [SS95], we also implemented a subdivision of an
icosahedron with triangles. Our intentions are especially targeted
to wavelet based image processing of spherical textures. The image
below shows the application of blurring a texture, useful e.g. for
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generating a blurred version of an environment map that can be used
in a shader.

Figure 6.33: Icosahedron subdivision for spherical wavelets on a sphere.
Visual debugging and testing of finding neighbor vertices (left), loading
an image texture (middle) and applying a blur by setting wavelet coeffi-
cients of a higher level to zero (right).

Figure 6.34: Interactive 3D rgb his-
togram viewer.

3D RGB Histogram. To visualize the color distribution of an image
in RGB space, this interactive 3D histogram viewer was implemented.
The size of the cubes depends on the number of pixels within that
color range. This tool was used to analyze images and gain insights to
adapt a segmentation algorithm for the 3D scanner alreadymentioned
in section 3.3.3.

Figure 6.35: Interactive illustration
of multi layer circuit layouts.

3D Visualization of PCB Designs. Printed circuit board designs
often involve multiple layers. This viewer helps to better understand
the complex 3D structure of the layout.

Random Dot Stereograms. To better understand the principles of
random dot stereograms, we implemented it ourselves.

Figure 6.36: Random dot stereogram. Input images are a depth image and
a pattern. For the output, the pattern is repeatedwith a horizontal spacing
influenced by the depth image. When viewing the image cross eyed or
parallel, the 3D structure of a sine surface is perceived.
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Score Four. To measure the influence of different types of displays
for complex 3D structures, we picked and implemented the Score
Four game and extended it with free placement of the tokens.

Figure 6.37: A variant of the Score Four game with free placement in 3D.
This network game for a monoscopic screen was written to compare per-
formance of players with and without head tracking. We found that head
tracking was used much like a rotation input device, so instead of head
tracking an automatic back and forth rotation has a similar effect to pro-
vide a good understanding of depth by motion parallax.

6.2.4 Browsing, Organizing and Viewing

6.2.4.1 Multimedia Database Organizer

Browsing and finding specific photos within a large amount of photos
can take a long time. We looked at options how to improve this
situation, with the potential to use this for other multimedia files as
well.
This project started in , in the mean time, other free and commer-
cial solutions became available. PhotoMesa provides an innovative
user centered zoomable interface. Adobe Photoshop Lightroom tar-
gets professional users, especially facilitating batch processing of
shootings. Google’s Picasa is especially useful to also publish photo
collections in the internet. Google Maps shows georeferenced photos
on a 2Dmap, whileMicrosoft Streetview andPhotosynth register photos
in 3D space. Interestingly, little work was done in research at the time.
As an example from , inUnderstanding Photowork [KSRW06], Kirk
et al. analyze what tasks users perform with their photos as well as
their workflow, with the goal to better understand how to support
them. A few further papers discuss new user interface ideas, like
photo magnets [CRB10] for structured and unstructured exploration,
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also allowing to find similar images or group photos with a magnet
metaphor.
To find a known photo in a private photo collection, vague informa-
tion is usually known, like a time range, a location, etc. We intended
to include a filtering mechanism to allow to increasingly restrict the
displayed number of images. Also, we opted for a zoomable, mouse
oriented interface, allowing visual browsing by displaying many
thumbnails, i.e. maximizing the number of pixels used to display
images instead of GUI elements.
Another important requirement is a simple way to add new meta
information during browsing, facilitating future searches. Our idea is
to easily define new types of information using categories or key-value
pairs with text or numerical 1D and 2D values. Some may only make
sense in a special context. Different rating criteria for the technical or
artistical quality may be defined by a user. Some photos are probably
found a lot faster by tagging themwith a category, like animal. In some
special situations, it might make sense to e.g. specify the number of
people visible in the photo. In a browsing session later on, the photos
of that session might be arranged in 2D with a horizontal position
given by the time and using the number of people for the vertical axis.
Another scenario may be first selecting and sorting out photos for a
specific slide show and then showing the photos in the desired order.
For an easy reuse of meta data, backup and copying of folders, we
store the data in one xml file per directory, with a quick binary cache
in the background for meta information and small thumbnails. The
goal is a scalable system, allowing to see all of the user’s photos at
once. Note that a lot of useful information can usually quickly be
extracted from EXIF tags of the photos. When loading new photos,
a major performance increase is to use the EXIF thumbnail for the
low resolution display, if available. This allows to quickly browse
new files and folders. Some information may also be generated or
estimated, e.g. heuristic algorithms might be used to automatically
detect and tag an outdoor photo with a blue sky. Such an external
program could easily workwith the xml database in that folder, which
provides a simple interface for such specialized applications.

Figure 6.38: Zoomable folder view (left). Image loading is done in the
background, so that zooming and panning is always fluent. If possible,
the small preview image in the EXIF header of a JPEG file is loaded, a
major speed up. A hierarchical calendar view (right) which seems to be
less useful. A time line may be a better approach.
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Figure 6.39: The Google maps API was included for geotagging photos
(left). In the slide show view, the order of the images can easily be rear-
ranged by dragging with the mouse (right).

To display arbitrary 1D and 2D values, both positioning the photos
at or near the respective value as well as a sorted view may make
sense. Potential problems of the first approach are either large gaps
or many photos very close together. Some important values deserve
special treatment, notably the geographic location. Even today, only
few cameras feature automatic georeferencing. However, it is often
easy for the user to place a group of photos on a map, also specifying
an uncertainty radius. An example are holiday photos. A quick anno-
tation by selecting the photos, moving them to the country on a map
and selecting a large uncertainty radius of hundreds of kilometers,
has the potential to greatly speed up a future search. Of course, the
location may be refined later on.

Figure 6.40: Early interface prototype for a fast, zoomable photo browser.
To quickly find a photo, the user can subsequently add filters to a filter
graph (left) and use a drag (red box) to define the filtered values, e.g. drag-
ging a rectangle on themap to restrict the selection to all geotagged photos
within that area.

The idea of quickly browsing and
finding photos is illustrated in the
following example. The user se-
lects a view, like the time axis,
then drags with the mouse to se-
lect a time range. Changing to the
map view, only the selected pho-
tos are shown. Again, by drag-
ging with the mouse, the user se-
lects a region on themap, thereby
restricting the amount of photos
drastically. After changing to a
sorted view, the few remaining
images may be browsed by look-
ing at the thumbnails. In some
cases, it is desirable to add photos
with additional selection criteria.
The solution is a filter graph, al-
lowing both and and or rules. A
filter graph represents a special
view or set of photos that may
be saved for future use, with au-
tomatically updating its content
when the information in the database changes.
Browsing such collections profits from a high resolution display and
a touch interface for collaboration, thus it is well suited for the HEye-
Wall or the multi touch table.
Such a flexible, zoomable interface makes it possible to allow a much better
browsing and searching than what a conventional file system offers. File
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systems should natively support storage of self defined meta data so that this
concept can be used effectively in a general way.

6.2.4.2 Gigapixel Image Viewer

Another project idea of special interest for the high resolution HEye-
Wall is an image viewer for large image data, like map datasets or
gigapixel panoramas. We have not implemented such an application
yet. Now, Microsoft’s Deep Zoom viewer allows this on a destop PC,
but it cannot easily be used on the HEyeWall.

6.2.4.3 Presentation Viewer

The first version of our slide presentation viewer dates back to ,
where slide transitions with Microsoft PowerPoint were not smooth,
rendered with very few frames per second. Thus, we implemented a
hardware accelerated slide viewer. Large textures were supported by
automatically generating tiles at the maximum texture resolution of
many graphics cards at the time at 256×256 pixels.
When showing a new slide, the next slide is preloaded in the back-
ground, only keeping the current slides in a texture cache. For an
overview, zooming out to a thumbnail view and a quick selection is
possible with a mouse drag, as shown in the image below. A few 2D
and 3D slide transition effects are the main feature. Support for show-
ing textured 3Dmodels on a slide with the .obj format, .avi videos and
high resolution 2D insets (see section 6.2.2.4) was added. For a series
of images, like exported PowerPoint slides, a default slideshow con-
figuration file can be generated. Lacking a graphical editor, changes
have to be made manually with a text editor.

Figure 6.41: An OpenGL based presentation viewer with 3D slide tran-
sition effects. Here, an overview is shown to jump to another slide, i.e.
during questions at the end of a talk.

As the code is rather dated, we are in the process of creating a new
version using x3d and instantreality. There, slides can be freely ar-
ranged in a 3D scene and templates are available, helping to quickly
generate such information. One useful new feature will be a preview
of the next slide on a laptop display, while showing the current slide
on the projector.
Instead of a commonly used 1D organization of slides, a logical and in-
teresting way is to use more dimensions and a hierarchy. Zooming and
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panning can serve for a better overview, using the human cognitive mapping
capabilities.

6.2.4.4 Museum Artifact Interaction

In museums, very small artifacts of an exhibition can not be seen well
or from all sides because of precautions for safety and conservation.
However, by placing a monitor next to the real artifact that shows
a rendering of a 3D scan, visitors can see all details. Additionally,
annotations may also be overlayed. Each visitor should be able to
rotate the object in an easy way. A mouse is probably not the best
interface, and even a trackball may seem too daunting or complicated
for people who do not use personal computers. One of our ideas is
to build a physical prop, resembling the artifact, that the visitors can
turn in order to rotate the object on the screen.
After some time during the development of a camera based solution
using natural features on the prop, it becamemore andmore clear that
still a lot of effort would be necessary for a goodworking system. Also,
there are always potential problems with occlusion, a limited field of
view of the camera, lighting issues, dirty or dusty lenses, etc. We thus
moved to a different solution with a three axis accelerometer and a
custom interface as described in section 2.3.5. Measuring the direction
of gravity, two degrees of freedom are obtained. We implemented
a direct mode, applying the angles to the object orientation directly,
and a mode where the rotation speed can be controlled.
Themain problem is themissing absolute value of the rotation around
the gravitational axis. Especially when the virtual object and physical
prop rotation are off by about 180 degrees, this leads to a motion op-
posite to the expected one. To overcome these problems, gyroscopes
can be added to better estimate relative rotations around the grav-
itational axis. The correct absolute value may be determined with
the help of an optical system that only has to work once in a while
to correct the absolute value, while the other systems always deliver
relative data with fast update rates. For more details, please refer to
our publication [HSLF07].
Trying to develop a tangible interface that is easy to use, we have not found
an optimal solution yet. For the intended application to rotate a 3D object
on the screen, a touch screen may be better suited.

6.2.5 Arts and Education

Figure 6.42: The BIX media fassade of the Kunsthaus Graz is the largest
display we used so far, in this case for artistic purposes. It has only 930
pixels in total.
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6.2.5.1 RapidPrototyping Framework for InnovativeUser Interfaces

power

serial port

sensors

outputs
microcontroller

PC

I/O board

Figure 6.43: Hardware components
being addressedby the IO interface
educational framework.

For a one week workshop in  on rapid prototyping of innovative
user interfaces, we developed an educational framework with software
available in both C++ and processing. Formultimedia applicationswe
added support for sound input with frequency analysis and output,
video rendering and access to custom external hardware components.
The self developed IO interface provides 8 analog inputs, 7 digital
inputs, 1 analog (PWM) output and 6 digital outputs, that can easily
be manipulated by software. Thus, a number of hardware sensors
could easily be used, e.g. photo transistors, accelerometers, motors,
pressure sensors, buttons or potentiometers.
At the same time, development for the very similar Arduino platform
started. It provides open source hardware and software andnow there
are many extensions and compatible clones available. The hardware
can be self made but also bought for a reasonably good price, making
it a good choice for prototyping nowadays. Many software examples
are provided by the community. Related, earlier projects are the
I-Cube System [Mul95] or Phidgets [GF01].

6.2.5.2 Product Customization

Figure 6.44: Kinect depth map pro-
cessing for customizing products.

For the MetaDesigner project, we looked at possibilities for users to
customize product geometry. One of the many ideas is to use the
geometry of the user’s face, obtained by a scan with a kinect sensor
and post processing with a combination of a few simple filters. This
depth map can be used as a surface offset on a product.

6.3 IMMERSIVE 3D APPLICATIONS
In this section, applications are presented that fit well to our immer-
sive VR setups.

6.3.1 Lighting Tool for Precomputation of Static Scenes

Usually, in architectural applications most geometry is static. When
also restricting the options to static lighting and (mostly) diffuse tex-
tures, a complex global illumination can be computed in a prepro-
cessing step. The amount of incident light is baked to a light map, in
addition to the color texture map. To compute such a light map, we
use Autodesk Maya. However, this process is manual and in some
situations it does not work: The software just crashes and there is no
way to get a result. Also, reflective or refractive materials that are
realized by a shader in the interactive visualization, cannot easily be
included in the same way in AutodeskMaya, resulting in a lot of work
or wrong lighting.
To avoid these problems, we implemented a tool that computes the
view from each point of view of a texel, using the average brightness
as light map value. We start with black maps and switch to the new
maps after computing the intensities for each texel of the scene. In few
iterations, a good looking solution is computed. Note that with each
iteration, the maps become brighter. This can easily be addressed
by using float values and tone mapping. As the rendering engine is

174 6. APPLICATIONS

http://www.arduino.cc/
http://infusionsystems.com
http://www.phidgets.com


directly used to compute the incoming light, all effects and shaders
work automatically. For example, glass, mirrors and other transparent
or reflective surfaces are handled correctly. As an example, sun light
reflections of a window or mirror are visible and even caustics are
produced on a diffuse surface.

Figure 6.45: Result of our hard-
ware accelerated global illumina-
tion tool for static scenes. It is ro-
bust and always works when the
model can be loaded. A preview of
intermediate solutions is available
as it is iteratively refined. By us-
ing the same rendering technology
as for the interactive display, all
lighting andmaterials are included
correctly, such as an environment
map for image based lighting and
shader materials.

A technical problem is the near clipping plane, as closer geometry
is simply not rendered. Without handling this case, light may leak
through walls, producing well visible artifacts. In other occasions,
light from close surfaces may miss, resulting in too dark patches. We
solve this by rendering backsides of polygons with a reserved color
(plain pink). Now, only valid pixels are used and their brightness is
averaged. To increase performance, the hemisphere or hemicube is
approximated by a wide angle perspective camera view of the scene.
Another issue is automatic texture coordinate generation for the light
maps. Often, in 3D models the same textures are reused for similar
models or for tiling. For light maps, a separate light map for each
surface is necessary. The object size in the world coordinate system
should influence the size of the light map. For an efficient arrange-
ment, a texture atlas can be used, which we have not implemented yet.
To avoid interpolation errors on light map patch edges, a few pixels
space are left as padding to the next patch. After each iteration, colors
are spread into the gaps with an iterative morphological algorithm.
Finally, the low speed of this approach is an issue. However, all speed
improvements from the rendering engine can be used, andmost of the
computation can be distributed to several computers, only needing
a synchronization after each iteration.
An interesting possible future extension is to store the incoming light
for each texel not as a single scalar, but instead a few terms with spher-
ical harmonics to approximate the incoming light on the hemisphere.
In that case, diffusely reflecting materials can be realized. An efficient
data representation and compression will probably be essential.
Using the rendering engine for precomputation of light maps solves a few
problems. To achieve reasonable computation times, many common ideas
for acceleration can be used. This approach may be especially interesting for
fully automatic lighting computation, e.g. for clients who want to inspect
their own 3D model in the DAVE and upload the model without lighting the
day before.

6.3.2 Interactive Illumination for Dynamic Scenes.

Figure 6.46: An attempt of screen
space ambient occlusion (AO) in
2003 (left) compared to normal ren-
dering (right). The AO pass had to
be done on the CPU back then.

In the last years, screen space approximations for global illumination
became popular. Already in , we also came up with this idea.
At the time, the computation had to be done on the CPU. A recent
implementation is presented by McGuire in [MOBH11]. Such screen
buffer based approximations may lead to visible differences at edges
in the DAVE.
The amount of artifacts at the edges in the DAVE due to the approximations
may be negligible. It makes sense to adapt and test such algorithms for
dynamic scenes in the DAVE.
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6.3.3 Architecture

Arguably the best applications for a CAVE are architectural visualiza-
tions. The large angle of view in a CAVE is perfect for an immersive
impression of the site. An interesting observation is that a beautiful
3D model may well be the most important factor for a convincing
application. User interaction, navigation, technology etc. can be great
and innovative, but will hardly impress if the wrong model or scene
is used.

6.3.3.1 Indoor Architecture

One of the most successful DAVE demos is a detailed model of an
apartment with precomputed lighting. Additionally, a few furniture
items can be inserted via a menu with the joystick. These inserted
objects do not influence the lighting, e.g. they do not cast a shadow.
However, we baked a precomputed ambient occlusion into their tex-
tures for a more believable lighting of the object.

Figure 6.47: Interactive furniture arrangement in a virtual apartment.

The inserted objects can bemoved
around and interact with each
other andwith the walls. For that
purpose, a very coarse geometry
of the objects and the apartment
is manually replicated in order
to speed up the collision detec-
tion, ignoring many of the details
used for the visualization. The
NVIDIAphysics engine is used to
compute collision responses and
is very fast.
The furniture can be freely ro-
tated to allow exploration of the
interface and possibilities. Al-
ready positioned furniture is eas-

ily pushed away by accident while placing another furniture item.
This is more fun than actually useful for the task of arranging furni-
ture. In the latter case, the standard orientation of furniture items
should respect their natural up axis and a reduced or disabled colli-
sion reaction between the items seems helpful.
The push of a button on the joystick toggles between travel and manipulation
modes. For novice users, this is sometimes not clear and a better feedback
should be added. Also, novice users do not understand why an object jumps
up when they place it slightly in the floor by mistake. A damping of that
motion, a visual feedback or an object motion with physics provide alterna-
tives that may be better to understand. The non-linear translation of objects
works very well.
A simple exploration of virtual models of sights is also an interesting
application. Such virtual tourism can be tested with the 3D model of
the National Library. This application does not only save a visitor to
physically travel to the location that may be on the other side of the
world, but also allows inspection from positions that are not publicly
accessible on the real site.
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Figure 6.48: Kids flying through the State Hall of the Austrian National
Library.

Levels in professional 3D games are often modeled with a lot of effort
by skilled artists. Showing such models in the DAVE is far more
impressive than to use our self made models. An early example is the
Quake III Arena level viewer. We downloaded and modified it to be
able to fly through the levels in the DAVE. An unwanted effect that
we could not easily change is that the collision response of the viewer
reflects the motion vector when hitting a wall, even when hitting at a
slight angle. This may lead to an awkward feeling, especially when
traveling at a high speed.
Even worse, the collision reaction is computed for the origin of the
DAVE, regardless of the viewer position in the DAVE.With the current
implementation, the user cannot navigate through a wall with the
joystick, but physically walk through it within the limits of the DAVE.
Better would be to push the model away in that case, not allowing a
penetration. Another problemwith collision detection is that a novice
can quickly get or at least feel trapped. For these reasons, we often
just allow a free motion, also through walls.
Collision detection in the DAVE should include the current user position
with respect to the origin and should be modified to push the model away in
case a user causes a collision by physical walking.
Later, Id Software released the game source code to the public domain
andwe ported the gamewith all the interactions as well. Interestingly,
many visitors with an age of 20–30 years especially ask for such a
game port. Already in  and later, Paul Rajlich worked on clones
of the similar games Doom and Quake II that ran in the CAVE at
NCSA.

House Modeler. The 3D preview of planned architecture is an in-
teresting application, but the cost and effort of manually generating a
3D model are often a problem. Still today, not always a complete 3D
model is available for new buildings. A fully automatic generation
from the 2D plans is not yet possible, they must be interpreted by a
human observer.
To facilitate a semi automatic model generation from 2D plans, we
designed the concept of the House Modeler. The Generative Modeling
Language (GML) [Hav05] is used to allow easy subsequent changes,
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like resizing a window or moving a wall. Especially cost effective
may be a model range that can be reused, such as a limited choice
of models for prefabricated houses. The available options may be
offered, even colors and materials may be selected appropriately and
their cost can be displayed. To show the model with a nice lighting in
the DAVEwithout further manual work, the lighting tool described in
section 6.3.1 was developed. A few different lighting situations may
be precomputed and selected for interactive viewing in the DAVE.
This idea sounds good but there is little interest. Especially vendors
of prefabricated houses have build many similar houses that can be
visited by potential customers. Materials are shown in large halls for
comparison, which is still much better than looking at an image of
that material.
While the immersive preview is valuable in our opinion, it is unclear how
much money customers are willing to spend. If the architect planning a new
building has a tool that can export a 3D model, an automatic workflow can
be established in order to reduce manual work and reduce the cost.

Yachts and Cruise Liners. For the verification of planed passenger
cabins on a cruise liner, we obtained a textured 3D model. While the
designer complained about a few details that were apparently wrong
in the supplied 3D data, it made clear how convincing and realistic
the impression is. We observed this with several other 3D scenes:
Errors in the model may be overlooked on a normal 2D monitor, but
in the DAVE they are often obvious at the first inspection.
The visualization of yacht interior design is a current project with the
hope to help selling the product.

6.3.3.2 Buildings and City Planning, Exterior Architecture

Figure 6.49: Available data for
the city. Top left: orthophoto,
top right: LIDAR scan (processed
height data), bottom left: cadastral
map, bottom right: soil usage map.

Using available data from a city, we automatically generate a 3D
model. Within a week, the city of Braunschweig model with 200km2

was converted in .

Figure 6.50: An automatically generated 3D citymodel of 200km2 ofBraun-
schweig in the first DAVE at TU Braunschweig. The data illustrated in the
figure above served as input. The building on the right is one of the few
detailed buildings that were modeled manually.

We identified a number of applications for a 3D city model. However,
most of them do not require an immersive environment:

• Information and navigation (maps, tourism, navigation sys-
tems, user interface for GIS)

• City planning, architecture and real estate business
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• Physical and statistical analyses and simulations (radio wave
propagation, flooding, fire, air flow, traffic noise)

• Military and security (training, emergency coordination)
• Multimedia (computer games, entertainment, movies, adver-

tisement)
For these applications, traditional city geographic information system
(GIS) data needs to be transferred into a 3D GIS database. In a case
study with the data from the city of Braunschweig, our major achieve-
ments are a unified access to data from various sources, automatic
model generation and interactive display through a number of culling
and LoD algorithms. For more information, please refer to [LF04a]
and [LF04b].

Figure 6.51: Frankfurt exhibition center, a business example for verifica-
tion of a planned site using VR.

We see a great potential for 3D city models. Cost for conversion or acquisition
andmaintenance as well as non standardized data formats aremajor problems.
Google and Microsoft both solve the problem by investing a lot of money and
own acquisition.

6.3.4 Drawing, Volume Data Visualization and Interaction

6.3.4.1 Volumetric Painting

For 3D sketching and painting, we developed a volumetric painting
program for the DAVE, based on a voxels, cubic volume elements in
a regular grid. Each voxel contains a color and transparency value,
similar to a 2D pixel based painting program.

Cursor Position and Visualization. The spray position where the
paint appears should not directly be set to the position of the joystick
tracking target, as in that case the hand and joystick are inside the
generated volume, a case where occlusion is not handled correctly. In-
stead, we choose a position some 20cm into the pointing direction. To
provide correct occlusion, the cursor visualization should be included
in the voxel visualization code. However, we have not implemented
it that way out of performance reasons.
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Sound Feedback and Tangible Input Device. For additional feed-
back, we added playback of a prerecorded spray soundwhen pushing
the trigger. We also planned to use a physical spray can as prop, but
found that already the joystick works well enough.

Figure 6.52: Volume visualization
of a computer tomography of a frac-
tured radius (top right), loaded in
the volumetric paint program. In
contrast to conventional volumet-
ric imaging, the creases are made
clearly visible by the lighting algo-
rithm.

Lighting. When we first tested spraying with a plain color, we soon
noticed that the depth impression in the DAVE did not work well, as
in that case, larger areas of the screen have a single color. This gives
no clues for stereoscopic fusion and the screens may be perceived
instead. Adding a texture or lighting would help. We implemented a
very rough approximation of a global illumination, slowly updating
for random voxels in the background. A lighting value is stored for
each voxel and set according to the transparency values of a few voxels
above and to the side. The more of these voxels are transparent, the
lighter gets the result.

Rendering Speed. The drawing volume is the whole DAVE so that
all positions can be reachedwithout additional travel. To savememory
and rendering time, the volume is split into smaller cubes that are
sorted in depth and rendered individually. Empty cubes are not
rendered at all, a very simple form of empty space skipping. With
our rather basic implementation with a constant step distance for ray
casting, filling larger volumes of the DAVE significantly slows down
rendering and becomes unusable. The application was written in
, now much faster algorithms such as OptiX by NVIDIA may be
used on faster hardware to allow a larger volume to be filled while
still achieving high frame rates. See section 6.3.5 for details on the ray
setup.

Figure 6.53: Volumetric painting in the DAVE.

A future goal is to be able to draw, paint and sketch volumetric scener-
ies and models, e.g. a nature scene with a landscape. Non-photo
realistic rendering should be considered, as well as testing different
types of primitives, e.g. constructing the scene by just using spheres.
Large screen areas with a plain color lead to a loss of the stereoscopic impres-
sion. Due to occlusion issues, virtual content should not be rendered at the
joystick position but e.g. some 20cm in the pointing direction.
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6.3.4.2 Direct Manipulation of Triangle Meshes

A few specialized tools were developed tomanipulate trianglemeshes
and height maps. One tool enables pushing and pulling of a surface
with dynamic retesselation, another tool allows drawing smooth pipes
and the last one allows to generate and texture 2.5D landscapes. To
select a point on the surface, the ray from the average eye position
through the joystick tip is used as bearing. As a feedback, the surface
colors around the cursor is changed to represent a cursor.

6.3.4.3 Modeling and Modifying Meshes

Figure 6.54: Triangle mesh modeling tools for the DAVE. Left: The result of a 2.5D terain. Left: Sculpting is
performed by surface extrusion and dynamic retesselation. On the right side, a set of tools can be selected or
previously saved models can be loaded.

Using the surface deformation tool, it is rather hard to create a model
as intended by the user. When pushing the joystick button, the mesh
moves into the relative direction of the joystick motion. However it
does not feel like a very direct way of grabbing the surface, but rather
acts like drawing a surface offset. The landscape tool is useful, but
in that case an immersive environment has little advantage over a
desktop setup. The idea of subsequently scaling up the landscape to
fly over it is not realized yet. More details can be found in the master’s
thesis of Lukas Fraser [Fra10].
Instead of sending a new mesh to the clients, only mesh modification com-
mands are send via TCP. According to the developer, in some cases the same
commands on the same data on equivalent hardware lead to different results,
i.e. comparing two lengths with an almost equal value caused problems. The
problem is now mostly avoided in practice by adding a small constant to
one of the values. In consequence, robustness is reduced when relying on
consistently replicated data when distributing the same commands. A system
tolerating errors and maybe slowly synchronizing redundant data may help
to allow recovery in case of an error.
3D sculpting may be more suited on a setup with haptic feedback. Often
needed functions are mapped to joystick buttons, while other commands are
executed by walking up to icons on the side and clicking on them, a well
working concept. Obstacles are placed at the screen positions, restricting the
physical user motion successfully in a natural way.
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6.3.4.4 Generative Modeling

A couple of interactive applications using the Generative Modeling
Language (GML) [Hav05] were ported to the DAVE using the Davelib.
Thus, parameters of previously programmedmodels can be modified
by picking and dragging sliders in 3D space, next to the model. Some
values may significantly slow down the evaluation of the program, so
they should be restricted to a sensible range to maintain high enough
frame rates.

Figure 6.55: Generativemodeling ofwalls. The user aimswith the joystick
at the small green sphere, resizing the wall by dragging. Note that for
the user, the black line visible on the floor appears to start at the joystick
position.

6.3.5 Raytracing

Figure 6.56: Photo of the same
raytracing framework as in sec-
tion 6.2.3.3 in the DAVE, with a
shader implemented by a student
as an exercise for a related lecture.

Brute Force Raytracer We implemented a framework for a simple
GLSL raytracer that we also use for teaching (see also section 6.2.3.3).
It fully uses the Davelib and runs on all of our platforms and setups.

Ray Setup. To be able to easily use the Davelib configuration and
calibration matrix, we came up with a technique similar to volume
rendering, allowing navigation and head tracking to work as usual.
One point of the ray for each pixel is given by the camera center,
i.e. the respective eye position. We compute that position from the
inverse of the OpenGL modelviewmatrix multiplied with the eye
position in the DAVE coordinate system (see lines 1 to 9 in the listing
below). The second point of the ray is computed by the fixed function
OpenGL pipeline. A box as a proxy geometry is rendered around the
camera position (see lines 16 to 23). The vertex transformation takes
geometric setup and calibration into account as usual via the OpenGL
projection matrix. The position in world coordinates worldPos is set in
the vertex shader and is automatically interpolated for the fragment
shader by the fixed function pipeline.
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1 glGetDoublev(GL_MODELVIEW_MATRIX, modelViewMatrix);
2 calcInvModelViewMatrix(modelViewMatrix, invModelViewMatrix);
3

4 float eyeWorldPos[3]; // includes camera movement (and tracking and stereo offset)
5 for ( int i=0; i<3; i++)
6 eyeWorldPos[i] = invModelViewMatrix[0+i]∗eyeDaveCSx
7 + invModelViewMatrix[4+i]∗eyeDaveCSy
8 + invModelViewMatrix[8+i]∗eyeDaveCSz
9 + invModelViewMatrix[12+i];

10

11 // set shader variables
12 GLint locCamPos = glGetUniformLocationARB(wus−>shaderProgram, "cameraPosition");
13 if (locCamPos >= 0) glUniform3fARB(locCamPos, eyeWorldPos[0], eyeWorldPos[1], eyeWorldPos[2]);
14 else printWarning("shader variable view_position");
15

16 // draw cube faces as proxy geometry
17 glBegin(GL_QUADS);
18 glVertex3f(−10 + camera.x, 10 + camera.y, 10 + camera.z); // +y
19 glVertex3f( 10 + camera.x, 10 + camera.y, 10 + camera.z);
20 glVertex3f( 10 + camera.x, 10 + camera.y, −10 + camera.z);
21 glVertex3f(−10 + camera.x, 10 + camera.y, −10 + camera.z);
22 ... // 5 more quads
23 glEnd();

Figure 6.57: OpenGL code fragment to setup raycasting or raytracing using the Davelib.

For the code above, the inverse of the model view matrix is needed.
Usually, it only consists of rotation and translation. In that case, the
following fast and simple code is sufficient:

1 // this works for rotation and translation matrices only
2 // matrices in OpenGL order
3 // mv : input matrix
4 // imv : results will be in here
5 void calcInvModelViewMatrix(GLdouble mv[16], GLdouble inv_mv[16]) {
6 // transpose 3x3 rotation part
7 inv_mv[ 0] = mv[ 0];
8 inv_mv[ 1] = mv[ 4];
9 inv_mv[ 2] = mv[ 8];

10 inv_mv[ 4] = mv[ 1];
11 inv_mv[ 5] = mv[ 5];
12 inv_mv[ 6] = mv[ 9];
13 inv_mv[ 8] = mv[ 2];
14 inv_mv[ 9] = mv[ 6];
15 inv_mv[10] = mv[10];
16

17 // multiply negative translation with new rotation matrix
18 inv_mv[12] = −mv[12]∗inv_mv[ 0] − mv[13]∗inv_mv[ 4] − mv[14]∗inv_mv[ 8];
19 inv_mv[13] = −mv[12]∗inv_mv[ 1] − mv[13]∗inv_mv[ 5] − mv[14]∗inv_mv[ 9];
20 inv_mv[14] = −mv[12]∗inv_mv[ 2] − mv[13]∗inv_mv[ 6] − mv[14]∗inv_mv[10];
21

22 inv_mv[ 3] = 0;
23 inv_mv[ 7] = 0;
24 inv_mv[ 4] = 0;
25 inv_mv[15] = 1;
26 }

Figure 6.58: Fast 4×4 matrix inversion for a matrix only representing rotation and translation.

The respective GLSL vertex and fragment shaders are shown below.
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1 varying vec3 worldPos;
2

3 void main(void) {
4 vec3 Pos = gl_Vertex.xyz ∗ 1.0;
5 gl_Position = gl_ModelViewProjectionMatrix ∗ vec4(Pos,1.0);
6 worldPos = Pos;
7 }

Figure 6.59: GLSL fragment shader for a raycasting or raytracing setup in the DAVE.

1 uniform samplerCube environment;
2 uniform vec3 cameraPosition;
3 varying vec3 worldPos;
4

5 const int SPHERE_NUM = 15;
6 const int MAT_NUM = SPHERE_NUM;
7 const int LIGHT_NUM = 3;
8 const int REFL_NUM = 2;
9

10 uniform vec3 spherePos[SPHERE_NUM]; // spheres
11 uniform float sphereRadius[SPHERE_NUM];
12 uniform vec4 matColor[MAT_NUM]; // materials
13 uniform float matReflectivity [MAT_NUM];
14 uniform vec3 lightPos[LIGHT_NUM]; // lights
15 uniform vec3 lightColor[LIGHT_NUM];
16

17 ...
18

19 // returns t , where intersectionPosition = rayStartPos + t∗dir
20 float intersectRaySphere(int sphereIndex, vec3 dir) {
21 ...
22 return t ;
23 }
24

25 vec3 getRayColor() {
26 ...
27 for ( int i=0; i<SPHERE_NUM; i++) {
28 float nt = intersectRaySphere(i, dir) ;
29 if ((nt >= 0.001) && (nt < t)) { // is intersection closer to a previously computed intersection?
30 t = nt;
31 reflDir = reflect (dir , normal);
32 ...
33 }
34 }
35 ...
36 return col ;
37 }
38

39 void main(void) {
40 // initialize primary ray
41 vec3 rayStartPos = cameraPosition;
42 vec3 rayDir = worldPos − rayStartPos;
43

44 // trace a few reflections
45 for ( int i=0; i<REFL_NUM; i++) {
46 col += ...
47 }
48

49 gl_FragColor = vec4 (col, 1.0) ;
50 gl_FragDepth = 0.5+0.5 ∗ depth; // transform into depth range
51 }

Figure 6.60: Important parts of a fragment shader of the brute force raytracer written in GLSL.

As the distance to the hit object is available in the shader, we can
assign it to the depth buffer (see lines to ), so other OpenGL objects
occlude and intersect correctly with ray traced objects. However,
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these OpenGL objects will not appear in raytraced reflections. When
writing to the depth buffer, it is also important to take the clipping
planes into account, as depth values out of range result in the pixels
not being rendered.

Raytracer with CUDA. We ported our CUDA pathtracer to the
DAVE using parts of the Davelib. To render at a sufficient framerate,
the scene is simple and the number of rays is kept low. Thus, lots of
noise is visible.

Figure 6.61: A pathtracer implemented with CUDA, ported to the DAVE
with the Davelib. Note the color bleeding, especially visible at the left
side of the box. To achieve a high enough framerate, the quality is low
and a lot of noise is visible, that this photo does not show as the camera
exposed over a few frames.

Raytracing is close to being ready for use in immersive displays with a
moderate model size on affordable hardware. The head tracked view requires a
high update rate, compared to other applications where interactive rendering
with progressive refinement already shows great results. With few samples
and a good reconstruction filter such as the one described in [BEM11] in
a postprocessing step, the strong noise can be avoided, taking a partially
blurred image into account.

6.3.6 Shader Materials

In addition to diffuse materials, we implemented a few reflecting ma-
terials. To get shaders for such materials work correctly in the DAVE,
head tracking needs to be considered. The setup of the viewing vector
is very similar to the ray tracing explained above (see section 6.3.5).
In instantreality, the transformation matrices are already inverted.
The ray computation could be done in JavaScript, however there is an
undocumented predefined shader variable OSGCameraposition that
is set to the camera position in world coordinates, including head
tracking and stereo offset. Note that when using a 3Dmodel, its vertex
coordinates must be given in world coordinates, i.e. no additional
transformations must be applied.
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Figure 6.62: A few shader materials that also work correctly in the DAVE
with stereo and head tracking. As an example, a mirror reacts on headmo-
tion and shows correct depth. To include head tracking, the shaders and
their setup need to be adapted. Reflections are only approximated with
an environment map computed for one point of view. A second diffuse
version of this map ca be used to obtain a diffuse reflection without a loss
of performance.

1 uniform samplerCube Environment;
2 uniform samplerCube EnvironmentDiffuse;
3 uniform sampler2D fresnel_gradient;
4

5 varying vec3 vNormal;
6 varying vec3 vViewVec;
7 uniform vec3 porcelain_color;
8

9 void main(void) {
10 vec3 normal = normalize(vNormal);
11

12 float v = dot(normalize(vViewVec), normal);
13 float angle = acos(v) ∗ 2.0/3.1415926;
14

15 float reflectivity = texture2D(fresnel_gradient, vec2(angle,0.0)) .x;
16

17 // reflection vector
18 vec3 reflVec = reflect (−vViewVec, normal);
19 vec3 refl = textureCube(Environment, reflVec).xyz;
20 float reflLum = refl .x + refl .y + refl .z;
21 refl = vec3(reflLum, reflLum, reflLum);
22

23 vec3 reflDiffuse = (dot(vec3(0.0, 1.0, 0.0) , normalize(reflVec))∗0.5+0.8) ∗ porcelain_color;
24

25 // mix diffuse and specular
26 vec3 color = reflDiffuse + refl ∗ reflectivity ;
27

28 gl_FragColor = vec4 (color, 1.0) ;
29 }

Figure 6.63: GLSL fragment shader for a porcelaine material. Two cubemaps and one 1D array are precomputed
and used as textures.

Figure 6.64: We ported the shader from Instant Animated Grass [HWJ07]
to GLSL and adapted it to correctly work with instantreality in the DAVE.
Similar to parallax mapping, the grass is rendered just a single quad, a
ray casting is performed in the fragment shader, that even allows correct
handling of depth, which is demonstrated here with the white cylinder.
Horizontal and vertical slices of grass textures are used and slightly dis-
torted over time to create a wind effect.
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6.3.7 Scanned Scenes

An important application is to show a real place in a virtual environ-
ment, e.g. for inspection, virtual tourism, city planning etc. Manual
modeling is often too much effort. Instead, scanned point clouds
may be acquired by merging laser scans from multiple points, or by
structure from motion approaches that use multiple camera images.
It is still an active research topic to generate a textured surface with
few polygons out of such a point cloud.

6.3.7.1 Point Clouds

A straightforward idea is to directly visualize the point cloud. With
one OpenGL point primitive per vertex, the visualization is very fast.
Unfortunately, the point size does not vary with the distance, leading
to holes in close surfaces and too large points in the distance. One
solution is to use shaders to display a sphere for each point (see also
section 4.2.5.2). The vertex shader generates a billboard quad of suffi-
cient size, the fragment shader fills and shades the necessary pixels
to display the sphere. This can also be done using a texture lookup
for a fast computation. Note that in general, the sphere projection is
not circular. We convert the point data and store it in a binary format
for fast loading.

Figure 6.65: Point cloud viewer, showing a LIDAR scanned scene of a golf
court near Graz. The original full resolution scan contains 50 million
points, only 10% random samples are used here for visualization. The
scanner was placed on a tripod near the center of the image (black hole).
Close to the scan location, the point density is very high. Scan shadows
are visible e.g. at the right side, where geometry was occluded by the tree.
To obtain a color, photos can be registered to the scan. The bright areas in
the trees show sky color due to a misregistration.

Point clouds are well suited for large models, as clustering, simplifica-
tion of data and using multiple levels of detail is easy to implement.
Similar to our work, immersive rendering and analysis was presented
by Kreylos et al. [KBK08]. Wimmer and Scheiblauer present instant
points, a fast out of core rendering system for large point clouds [WS06]
and also show selection and editing [SW11]. Their system streams
data from the hard disc via a low level access to achieve optimal
performance for out of core rendering.
Our 3D city model (see section 6.3.3.2) also contains a 2.5D LIDAR
point cloud that is rendered out of core. As the points are arranged in
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a regular grid, we implemented both a quad mesh as well as vertical
lines for visualization.
To maintain a fast rendering for a continuously growing number of
points, we implemented a simplification on the fly with a dynamic
octree, see section 6.2.3.1.
A combination of triangles (e.g. for buildings) and point clouds (e.g. for
plants) may be interesting.

6.3.7.2 Image Based Rendering

To avoid the complex process of surface generation from point clouds
or problems with holes in point cloud visualization, we also tried
image based view interpolation. Multiple photos from different view-
points are registered and the best ones are selected to generate a new
viewpoint. Many approaches exist, see [SCK07] for a comprehensive
overview.
We designed a view interpolation allowing free motion for the DAVE.
However, so far we only implemented a version allowing 1D transla-
tion, using the rear projection wall with head tracking. While seeing
a stereo image, moving the head sideways also gives a parallax effect.
For this experiment we only use two photos as input and precompute
the optical flow from one image to the next and reverse. Using the two
images we inversely warp the original images and mix both colors to
obtain the result.

Figure 6.66: Image based rendering with generated virtual viewpoints.
The input images are taken from the positions marked by the black cir-
cles. The left figure shows the simple 1D case with only two input photos.
For each eye, the closest point on the connecting line is computed to ob-
tain a warping or interpolation factor. The right figure shows a set of 360◦

photos. Virtual viewpoints can be generated in the shaded area, using an
interpolation of three photos for each eye.

The figures above illustrated the idea for the 1D and 2D cases. For the
3D extension, the space is divided in tetrahedrons, using four images
for interpolation, allowing free motion of the user within the volume.
With 360 degree panoramic images recorded at multiple locations,
good representative images can be selected to build a tetrahedral
mesh. To render an image from an arbitrary point of view, the four
images representing the vertices of the containing tetrahedron are
used for view interpolation. For each edge in that tetrahedral network
the optical flow is precomputed in both directions. As we have not
managed to quickly capture 360 degree panoramas and automatically
register them in space, we have not implemented this extension yet.
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Figure 6.67: One of the 360 panoramas acquired for viewmorph, here in a
cylindrical mapping.

View interpolation of wide angle or panoramic photos taken from many
positions has a great potential to quickly visualize small complex real world
scenes. An automatic image registration is an essential part of the workflow.

6.3.7.3 Surface Mesh Based Rendering

A comparable solution is to generate a densely meshed surface and
use view dependent texturing. The result of a semi-automatic scan
using Autodesk Photofly, shown in the image below, demonstrates the
strengths and weaknesses of this technique. Especially for reflecting
or untextured areas, no geometry is generated at all, resulting in holes.
We expect that the view interpolation has less visible artifacts. About
40 photos were used for this model.

Figure 6.68: A photographically acquired scene with about 40 hand held
photos. The automatic reconstruction failed and a number of manual
reference points had to be specified to obtain this result using Autodesk
Photofly.

Better results can be achieved, obtaining a dense reconstruction in
real time using video images [ND10] or by using additional depth
sensing capabilities, e.g. of the kinect sensor. KinectFusion is a project
that aims for real time scanning with the kinect.
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6.3.8 Simulation Result Visualization

Vector data in 3D space, like for fluid and gas simulation, is not easy
to visualize. Just drawing arrows is not enough, as the arrows in the
front occlude vectors further away and there is simply too much data
to get an overview. A clipping volume around the user’s head is very
helpful. Further ideas are presented in [FRK11]. Also, transparency
may help to hide arrows that are less important.
Another idea is interactive placement of smoke or particles to visual-
ize a flow. This method is used in real wind tunnels but can also be
applied for visualizing a simulation. In that case, a particle source is
interactively placed. The particles have a short life time and are trans-
ported along the vector field. A well working example is presented
in [SBK06], [BRKE∗11], using spheres and tubes for visualization.
Similarly, rendering of molecules shows a high depth complexity.
Stereoscopic viewing gives a much better impression than a monocu-
lar view. Different views are implemented and the application was
ported to OpenSG and also used on the multi touch table.

Figure 6.69: The bio browser formolecular visualization is a good example
to show the advantage of stereoscopic rendering.

6.3.9 Games

The adaption of the game Quake III Arena is already mentioned in
section 5.1.1.4. Unfortunately, a few issues remain. The navigation is
rather hard to learn and use. Even though the user has more options
for control, i.e. independent viewing and shooting directions, it is
much harder to play the game in the DAVE compared to the desktop
setup. Instead, we prefer to show the level viewer to the visitors of
the DAVE. With the current implementation, the joystick index needs
to be specified in a configuration file. This number may change with
every reboot of the server.

6.3.9.1 Aquatic World: Virtual Fish

Aquatic World is a DAVE and desktop application showing behavioral
animated fish. The fish can hunt or flea, eat, or explore. Some can
even form a school of fish. A ship wreck and a few slowly moving
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plants are placed on the seafloor. Unfortunately, collision avoidance
for the fish is not implemented yet. An issue that we fixed late was the
use of the standard OpenGL fog, using the distance into the medium
to reproduce a scatter effect. However, the used value is just the part
of the distance perpendicular to the viewing direction, so that the
visibility is infinite looking 90 degrees to the side. We fixed this by
computing the Euclidean norm in a fragment shader.

Figure 6.70: Aquatic World with virtual animated fish.

More details can be found in the bachelor’s thesis of Martin Kandl-
hofer [Kan07].
Fog or similar effects should be realized using the euclidean distance in a
custom shader to avoid artifacts. Animated objects make the scene more
interesting. Already a simple soundscape or music in the background helps
to convey a certain mood.

6.3.9.2 PPRacer

Figure 6.71: PPRacer, an open
source game ported to the DAVE
with the Davelib. The penguin is
controlled by the user’s head posi-
tion.

This free game, a successor of Tux Racer, was ported to the DAVE
with the help of the Davelib. Changes included to start the game at
once without clicking through menus, removing head up displays,
and correcting the size of the sky box. Interestingly, the sky box was
initially very small but since the depth buffer was not used, this was
not noticeable in a 2D window. This example shows that there are
situations where code was not written with stereoscopic display in
mind. This is also a problem for OpenGL drivers trying to generate
stereoscopic images. With the help of the Davelib the correct projec-
tion matrix is set and the important game states are synchronized
over the network. The tracked head position is used to control the
character, a penguin sliding down a slope (see section 5.1.1.4). When
lying down, the eye come close to the floor projection screen. In that
case, the pixels appear large and the accommodation error gets so
high that it is uncomfortable to use and quickly leads to eye strain. A
better pose is to lean on the elbows.
For more details, please refer to our publication [SRO∗08].
We also used this application with minor modifications for a BCI
experiment (see section 6.3.10.1).
Applications that were not written with immersive or stereoscopic rendering
in mind usually need adaption. A too small skybox is a common example.
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6.3.9.3 Glider

Figure 6.72: Virtual glider simula-
tion, optimized for quick learning
and easy usage.

A virtual glider simulation was developed, that allows users to fly
over a landscape. The focus is an easy way to control the glider.
The user’s arms represent the wings and are tracked by a marker
on a stick in each hand. The user can move the arms similar to kids
playing airplane. Lowering the right arm and lifting the left arm
leads to a curve flying to the right. When stepping forward, the
glider goes down, stepping back leads to an upward motion (see
also section 5.1.1.4). The simulation is very error tolerant and not
physically correct, in order to avoid stalls and crashes and to achieve
a short learning phase. For a good feedback, a 3D model of the glider
is displayed that executes the steering commands. An automatically
following camera keeps the glider visible. Yaw and pitch are applied
but not rolling, so that the user does not loose balance.
The application is realized with OpenSG and features a dynamic
terrain engine with height maps and satellite imagery data of a large
area in Tyrol. The height values are exaggerated by 100%, so that the
mountains look more interesting. The terrain engine handles level
of detail display and dynamic loading or deletion of the tiles. At the
moment, the data is loaded by the master PC and distributed over
the network, resulting in occasional glitches. Instead, each PC could
also load the data from the local drive for a faster access.
An idea to transform this application into a game is to use rings in
the air as waypoints and fly a course through these rings.
For more details, please refer to our publication [SRO∗08].
Large data sets that are dynamically loaded should not be distributed via the
scene graph. Instead each machine should locally load the data upon request
by the scene graph system. The control of the glider is greatly simplified by
using a following camera. As expected, an attempt with the viewpoint in the
plane (without actually rendering the plane) showed to be harder to control.

6.3.9.4 Physics Engine

Figure 6.73: Playing with the
physics engine with many ob-
jects. Disabling gravity is a fun
additional feature.

Skill games with balancing and stacking objects or simple shooting
games can quickly be realized using a physics engine. For a short
time, it is fun to experiment with a few objects even without game
elements like rules or a task.
Even simple skill games are an interesting application that may also be used
for educational purposes.

6.3.9.5 Shooting Games

Figure 6.74: Playing Davender, a
game for the DAVE. Space crafts .

An early simple game called Davender shows space crafts flying
around the center. The player simply has to shoot those vessels before
they come too close by pointing a pistol and pressing the trigger. We
modified a water pistol and connected a sensor for the trigger and
added LEDs for a weapon heat feedback. With each shot, the weapon
heats up and only slowly cools down. When it is too hot, firing is
temporarily disabled.
A new, similar game was made up with a more friendly setting. Bal-
loons slowly rise from below and must be shot before they reach a
critical height. This game can also be played on the HEyeWall, when
unwrapping the scene from a cylinder to a planar wall. Balloons can
be popped by tapping on the screen. In that way, multiple players can
play simultaneously on multiple devices. With small additional rules,
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an interesting collaborative or competitive game can be made. As an
example, each user could have an own color of balloons. Shooting
balloons of the wrong color could be penalized. We are in the process
of implementing such a game with instantreality.

Figure 6.75: A concept of a balloon shooting game with the geometry for
the DAVE (left) and the HEyeWall (right). Here, multiple people play the
game simultaneously on two different setups. New balloons are spawned
on the red line.

6.3.10 Psychological Experiments and Simulations

For user studies and psychological experiments, real world tests are
sometimes dangerous, take a long time to setup or are expensive. In
some cases, it is very hard to control the situation for reproducible
testing conditions. In a number of such situations the DAVE may
be used, allowing circumvention of the problems above. For each
individual case it must be decided to what extend results from a test
in the DAVE are applicable to real world scenarios.

6.3.10.1 Brain Computer Interface in the DAVE

Figure 6.76: A modified version of the PPRacer linux game. The test sub-
ject controls a penguin sliding down a snowy slope, collecting fish.
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Figure 6.77: We modified the game and moved the fish above ground. Us-
ing the Brain Computer Interface (BCI), the jump is controlled by thought
to collect the fish. The BCI signal has a delay, so subjects must start con-
centrating on a previously learned activity a couple of seconds in advance.
Two custom levels are shown, without (left) and with (right) additional
steering with a gamepad.

Another related experiment [LSFP07] was conducted earlier using
the National Library model (also see Figure 2.32).

6.3.10.2 Navigation Tasks

For the Psychology Department, we helped setting up a stereo projec-
tion with our 3D tracking system and provide software and configura-
tion for showing 3D models. One task is to test brain activities during
a navigation task through a maze [KLFN10]. Another experiment
uses the 3D model of the campus Inffeldgasse. The advantage is here
that tests can also be done in the real environment and compared
with the virtual counterpart. For the latter project we decided to use
instantreality. In that way, we hope to be able to quickly adapt to
changes or new similar tasks in the future. The missing functionality
is added by plugins and JavaScript code. As examples, the require-
ments include a log file of the user position, a parallel port signal
when approaching a sign (for synchronization with EEG records)
and disabling the navigation for a few seconds at the start. Also, the
psychologists wanted to place and exchange signs on their own to
plan and modify the test conditions. Most requirements were easy to
fulfill, while others took a lot of time.

Figure 6.78: Model of the campus, also used in psychological experiments.

This is our most complex self made model up to now. We also im-
plemented a workflow for the conversion of the model, as the model
is improved from time to time. After exporting the model with the
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correct settings from Maya to a VRML file, we transform this to X3D
using an optimizing tool by instantreality. We thenmodify the texture
paths with an additional tool. To include shaders and be able to reuse
instanced objects, we then apply an XSLT transformation to replace
the specified nodes. The last two steps may be fused into a single step
in future.
For more details, please refer to our publication [KLFN10].
In such experimental setups, scripting is very well suited, as small modifica-
tions are often easy to achieve.

6.3.10.3 Efficient Signage - Imitate

One research project where the DAVE is used is called Imitate. Sig-
nage placement and indirect guidance by lighting is tested with the
example of a train station and the connecting public transport sys-
tem. Experiments can be repeated with the same conditions easily,
opposed a real train station where conditions may quickly change. It
is still an open question, how useful the results will be. It is unclear
how well walking distances can be judged. Ideas include a physical
treadmill, walking in place [SUS95] where the user lifts the feet al-
ternately in order to navigate, or travel by joystick while moving the
camera up and down corresponding to virtual steps, similar to some
first person shooter games.

Figure 6.79: A concept model, illustrating the Imitate project in that sig-
nage placement is verified.

6.3.10.4 Vehicle Simulation

Unfortunately, testing cockpits or dash boards of virtual vehicles in a
CAVE seems not to be such an ideal application. Due to the vergence-
accommodation conflict, very close objects may lead to serious eye-
strain and the depth perception is not as convincing.

Figure 6.80: The e-Go one per-
son aircraft fuselage from the side.
(modified from image in public do-
main by Tony Bishop)

Aircraft Visualization. An aircraft designer provided us with the
geometry of e-Go, a not yet built one person plane. One interesting
aspect for the designer is, how large the cockpit feels.
Due to accommodation problems, close objects are usually not well suited for
the DAVE. To minimize eye strain, they should be placed close to the screens
if possible.
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Car Simulator. The Institute of Automotive Engineering at TU Graz
plans to construct a car simulator. If the funding and room require-
ments can bemet, the plan is to mount parts of a real car on a hexapod
motion platform. Awide angle autostereoskopic display is envisioned
for visualization (see section 2.2.5.2). The goal is to be able to develop
driver models and run experiments for emergency assistance systems
with many test subjects. In a real car, such tests are lengthy to prepare
and expensive, so that e.g. only a handful of people can be tested.
In the simulator, ten times more test subjects are feasible, much bet-
ter representing different types of drivers. Our part is to realize the
display and visualization.

6.3.11 Visitors

An important task of universities is to educate the general public by
spreading knowledge and research results, also demonstrating the
necessity of research and encouraging scientific interest, especially for
children. The DAVE is a tool making this particularly simple. Almost
all visitors are amazed by its capabilities and realism.
With an estimated number of around 2000 visitors in the past five
years, we gained a considerable amount of feedback, e.g. on our in-
teraction methods that we progressively refine to adjust to the user’s
demands. A majority of visitors are first time users. Thus, it is impor-
tant to provide interaction that is very easy and quick to learn and
describe.

Children. Young children under the age of about five years tend to
start crying very quickly. We have not investigated further for reasons.
Also, young children typically need to hold the glasses which are
too big for them. With many school classes visiting, usually with
an age from eight to ten years old, we realized that the kids become
very excited and active. It is important to calm them down, stopping
them from accidentally walking into the physical screen. For tough
situations, we either quit the demo or turn off the display, i.e. we
switch to an application that shows a black image on all projectors.

Figure 6.81: Some visitors, espe-
cially younger children, may loose
balance and may need support.

Safety. For several reasons, we only allow access to two or three
people at a time, while the rest of the group can watch from behind.
Fewer people are easier to take care of. Often, a user has to be stopped
from accidentally walking or poking through the screen, or hitting
a neighbor with the joystick while navigating. In some cases users
may loose balance. Especially when flying through a wall for the first
time, children may fall backwards out of reflex. Users that report
dizziness are encouraged to sit down on a chair or go outside.
About once a year, a carbon stick on the joystick or the glasses breaks
because people accidentally drop a device. In that case, the stick
needs a replacement and the target must be recalibrated.

Figure 6.82: KinderUni educational
workshop for children. We usually
allow only three visitors to enter
the DAVE.

Health. For the DAVE or other setups where glasses are passed
around, there is a danger of spreading a viral or bacterial eye infection
called pink eye. However, in our case the danger is low, as the virus
or bacteria can survive on the equipment for a maximum of five days.
We only occasionally disinfect our equipment, as frequently such a
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time passes between demos. However, for frequented places like 3D
cinemas, this is a serious issue and glasses should be disinfected after
each use.

Figure 6.83: Only a single user can control and correctly view the 3D scene
in theDAVE.Asminimum time, oneminute per visitormakes sense. With
many visitors this leads to long waiting times, as here at the Lange Nacht
der Forschung.

Figure 6.84: The children instinctively test if eyes tell the truth, but no
haptic feedback is available.

Figure 6.85: We have a step that is also marked by black yellow stripes.
Later we added a room light in form of an LED strip. This enables basic
orientation in the DAVE even when the projectors show black, while it
does not influence projection contrast or the tracking system notably.

To avoid injury and broken equipment, only few visitors should be allowed
in the DAVE. Operators should stand close to the principal user, ready to
quickly grab and stop him from walking through the screen.
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6.3.11.1 Education and PR

It is very hard to convey the immersive experience in the DAVE with
words or 2D images, we encourage everyone to try it out in person.
To reach many people and gain new users in industry and research,
we have a regular visiting hour once a week. A nicely looking flyer
was designed and lots of information is provided on our homepage.
This includes our video publication in 2008 [LSF08].
For larger groups of more than about ten visitors, we split up the
groups. While ten people are in the DAVE, we explain the technology
and show demos to the rest of the group on the rear projection wall.

Figure 6.86: KinderUni educationalworkshop for kids. Weusually present
different technologies for stereoscopic viewing and explain and show
head tracking. Instead of just presenting, we let them try different effects
themselves.

Figure 6.87: In this experiment, the children try out what happens when
the polarized glasses are turned. We also ask them to move around to
experience the effect of missing head tracking or motion parallax.

6.3.11.2 TV cameras, filming, photography for publication and
press

Figure 6.88: While this photo looks
good for 2Dmedia, it is misleading
for non-experts. The user as shown
here has no haptic feedback, sees
a distorted view and lacks of 3D
glasses. Often, photos are edited,
e.g. to add a 3D object that extends
over the screen borders.

It is hard to convey the 3D impressionwith 2Dmedia. To avoid double
images or flickering thatwould result from a not synchronized filming
of a time interlaced stereo image, we usually switch to a monoscopic
display. For projectors showing the color channels sequentially, the
exposure time should be set to a multiple of the frame duration to
avoid color deviations. For a correct perspective for the camera, we
sometimes attach the head tracking target to the camera. Filming a
user in such a way, the user sees a distorted mono image and may
have difficulties with interaction tasks like picking, but the resulting
photo or video looks better. For one scene in the DAVE movie, we
used a tracked moving camera to film the first person’s view of a user
walking through an appartment.
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6.3.12 Lessons learned

We have implemented and ported many programs using the Davelib,
OpenSG and instantreality. New insights came with almost each
application or even just different models in the same application.

Suitability for the DAVE. To judge whether an application is well
suited for the DAVE, several questions come to mind.
Is a wide angle of view required? For looking at a small object from
outside, a single stereo wall might be sufficient.
Is there a reasonable amount of three dimensional structure? Objects too
far away will not give a good 3D impression, e.g. a solar system in its
real dimensions.
Are objects very close? Too close 3D objects are not well suited, like a
dense set of vectors or a tight cockpit. We identified the vergence-
accommodation conflict as a major technical problem of CAVE tech-
nology today. Another tricky part for displaying close objects is cor-
rect occlusion. In a CAVE for multiple users or for close objects,
occlusion is wrong, as people and the own body always cover the
screen. A solution may be an additional see-through HMD.
Is the rendering technology capable of displaying the data in the necessary
quality? The rendition capabilities of colors and dynamic range are
rather limited.
Is the interaction suitable? Some applications may not work well with-
out correct haptic feedback. An example are tasks requiring precise
input, where a mouse is particularly good at. Even if the tracking is
precise enough, it is very hard to move the hand precisely in mid air.
Further issues concerning correct haptic feedback remain.

Negative Example. A negative example of an application for the
DAVE is free form sketching. Close objects lead to eyestrain, occlusion
is not correctly handled and imprecise input render such application
unusable.

Misperceptions. An often discussed problem of the CAVE is a dis-
torted perception of size. However, we did not strongly experience
such deficiencies ourselves. For the application of indoor architecture
we discussed and tested the usage of an HMD instead of a CAVE. A
small field of view, latency and heavy gear on the head lead to a worse
impression. In contrast to the DAVE, with the HMD we did not im-
merse the same way, in particular we did not feel capable of judging
the size of a room. We suspected that the main cause is the small field
of view, but a quick experiment looking through a pair of cardboard
tubes also restricting the field of view by a similar amount showed
that this is not the (only) reason. Among experts this phenomenon is
still an open question.

Central Media Distribution. OpenSG and instantreality normally
distribute all content via network to the render clients. When large
amounts of data need to be loaded dynamically during usage, this
concept is not so well suited. When flying over a large terrain as
in the glider application, data for the new tiles must be loaded and
distributed over the network. Blocking can easily occur, which is
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unpleasant for the user’s experience. A better way is that all clients
load the necessary data locally.
Another example is high resolution video playback on the HEyeWall
with instantreality. For a FullHD (1920×1080) video, the maximum
frame rate is about 1 Hz. We assume that the main application de-
codes the video stream and sends the new texture image in an un-
compressed or weakly compressed format over the network. Much
more efficient is the approach that every PC loads and decompresses
the video frame on its own. For maximum performance, the video
may be cropped to only the necessary region for each individual PC
in a preprocessing step. While OpenSG is not designed for such an
approach, special code can be written to be able to locally access re-
sources. In InstantReality, to our knowledge this is not possible at the
moment.
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7
Conclusion

The achievements of the work described in the previous chapters are
discussed and set in relation to the goals stated in the introduction.
Limitations and areas for future work are given.
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7.1 ACCOMPLISHMENTS

7.2 CONTRIBUTIONS AND BENEFIT

This work presents three major contributions on the way to fulfilling
the goals mentioned in the introduction.

First, many improvements and work on the DAVE allow immersive
exploration and limited modification of 3D worlds even for novice
users without computer knowledge. The software framework Dave-
lib is fully rewritten to provide a lean way to port applications to
VR setups, a cost effective optical 3D tracking is realized, usability
for operators is improved significantly and a number of different
applications are implemented to showcase the DAVE.

Second, the HEyeWall Graz introduces a new concept for a large
seamless display. The potential of multi touch hardware and interac-
tion on the HEyeWall and on other setups is demonstrated.

Third, in the field of Computational Photography, a few specialized
applications are explored. Image alignment methods for image stacks
and multi resolution images are presented.

The DAVE had about 2000 visitors in the past five years, and our
multi touch setups were shown on a number of exhibitions and fairs,
demonstrating that our research is not purely theoretical but that
practical demands are also met.
When building the DAVE in Graz, we had hoped to receive requests
for use from other research groups or the industry. We suspected that
the existence of the DAVEmay have been largely unknown, so we sent
flyers to each institute, invested a lot of time in weekly demonstrations
and arranged for further publications in the university news. Unfor-
tunately, very little feedback was received from our efforts. The same
is true for our efforts to collaborate with architects and the faculty of
architecture.
Many potential users may be afraid that a VE is very complex to use
and program. The main purpose of the Davelib is to simplify the pro-
cess of porting existing OpenGL applications into a VR environment.
Using our library, a minimal amount of code changes is required in
such an application. In contrast, most other VR frameworks require
the application to adapt to their functionality. Nevertheless, devel-
opment of new applications using the Davelib makes perfect sense,
especially for prototypes or experimental software that is sometimes
hard to realize in large all-in-one VR frameworks.
A number of multi touch applications were tested. But are they really
useful or just fun and games? In fact, it is not easy to find a new
multi touch application that does not work without such an interface.
But considering multiple simultaneous users on a single large screen,
multi touch makes perfect sense, as no input device has to be handed
over from one user to the next. However, this is still a very special
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scenario. We found that for our own every day work, we do not go to
that room and power on the multi touch setup. It may be different if
the hardware was already integrated in our desktop monitors or the
office also had a large screen. The currently best suited applications
for such multi touch setups are presentation, e.g. as attraction on an
exhibition, and selling, e.g. a collaborative configuration of a car or a
bank contract with clients and salesmen.
Within the last decade, many people moved from analog to digital
photography. However, the potential is hardly used. Work is pre-
sented to help organize and browse databases in a quick way. Multi
resolution images are presented, a simple idea which has received
surprisingly little interest yet. To circumvent physical limitations of
photo cameras, image stacks can be used e.g. for HDR acquisition.
We present image alignment with free-form deformation that con-
sequently allows use these applications for the common case of not
having a tripod at hand.

7.3 LIMITATIONS

7.3.1 Feasibility and Effort

From the researcher’s point of view, many applications for the pre-
sented technologies are possible today, but feasibility is another im-
portant factor for the actual usage. VEs are still rare and for many
applications, immersive visualization does not add a sufficient benefit
to justify the costs and effort for a VR setup. Application development
and maintenance is a considerable part. These may be the reasons
why VR became somewhat out of fashion after a hypewith unfulfilled
expectations one to two decades ago. For example, virtual tourism
or archaeological reconstructions and exhibitions of a past time are
great but rare applications for immersive VR environments.
Also, multi touch setups need special development to create intuitive
usage. Today they are hardly used for everyday purposes, but mostly
to show off the innovation. Applications that do not work without
multi touch hardware are rare and often constructed for the purpose
of demonstrating the technology itself. While they may be less used
for productive work, they may enable or enhance social interaction
and activities.

7.3.2 Technical Limitations

7.3.2.1 DAVE

Display Hardware Limitations. For stereoscopic displays, the ver-
gence-accommodation conflict poses a major technical challenge that
remains to be solved. In commonly used setups for immersive screens
with two different images per eye, objects at a distance with a sig-
nificantly different accommodation than the screen lead to serious
discomfort or eye strain. So far, only volumetric or holographic dis-
plays can achieve a correct effect by attenuating or emitting light at the
respective position in 3D space. Many restrictions, large hardware

7.3. LIMITATIONS 203



and rendering efforts and a high price are common drawbacks of
these displays. We suspect that the vergence-accommodation conflict
may also be the cause for reports on mismatch of the perceived size
in VR.
For both immersive and non-immersive visualization, a major chal-
lenge is the introduction of HDR imaging to the consumer market.
Interestingly, this seems to receive rather little attention by the indus-
try. While LCDs with LED matrix backlights are a good approach for
monitors, a feasible solution for HDR projection is less clear. Digital
cameras usually capture images with a bit depth of more than 8 bits
per color channel already. The hardware interfaces and the software
in between cameras and displays is the limiting factor, the operating
system is an example.
The photo below shows us developers, mentally comparing the real
Austrian National Library State Hall to our 3D model. While the
amount of perceived geometric details and materials is certainly dif-
ferent, the most striking differences is probably the dynamic range.

Figure 7.1: Contemplating developers in the real National Library State
Hall.

Haptics and Acceleration. Taking a step back, what other appli-
cations would be really useful in a virtual environment? A great
achievement would be a sports simulator, allowing effective and safe
training. Teaching, practicing and feedback are expensive and take a
long time, not only for competitive athletes but also for recreational
athletes. In addition, practicing might be dangerous and often stops
people from trying at all. In fact, a few simulators already exist which
are useful to some extent, like a golf simulator with a real club and a
virtual ball. In contrast, some other sports are too challenging. Exam-
ples are: kite surfing, wind surfing, wave surfing, skiing, mountain
biking, kayaking, pole vaulting or dancing. There even are a few
specialized haptic simulators, like for swimming and kayaking, but
they just allow the user to move in a similar fashion to the real mo-
tion. Their haptic feedback is extremely limited and nowhere near
the real experience, not allowing the user to learn and practice in the
simulator. Instead, it is merely suited for training the muscles. We
have little hope that haptic feedback will soon improve up to a level
in order to fulfill the requirements for these mentioned applications.
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Valuable Improvements. The optical tracking systemhardware and
software can be updated. Especially a hardware synchronization of
the cameras and an increased amount of light will help to make
tracking more robust in case of fast motion. Another option is to
replace parts or the complete system by a now affordable commercial
alternative.
The implementation of the IO device library based on Lua scripting
is the last part to complete a mostly setup independent program de-
velopment for VEs. A deeper understanding of Lua will be necessary
to complete the library for a simple development of efficient software.
With instantreality, a similar idea can now be realized with the help
of plugins.
The completion of the implementation of theVRAppStarter application
for system control will replace a grown set of confusingly nested
scripts in order to reducemaintenance overhead and improve usability
and flexibility for the operators.

7.3.2.2 HEyeWall

Frequency Split Display. A working prototype for the novel idea
of a scalable seamless high resolution display was implemented. In
order to allow a shadow free touch interaction for multiple users, a
rear projection is necessary. Hotspots are inevitable and result in
view dependent brightness changes. An even stronger reduction of
hotspots with lower gain factors may lead to an intolerable loss of
brightness. Wide angle projection increases problems with hotspots,
especially noticeable with the lens of the large projector. A photo-
metric compensation makes only sense for a single head tracked user,
applying a view dependent correction. This requires additional head
tracking, a new calibration model, i.e. multiple calibrations from dif-
ferent registered views and imposing the restriction of a single user.
Finally, the large projector intensity should match the intensity of a
tiled projector, i.e. the Ansi lumen of the large projector should be
similar to the sum of the Ansi lumens of all tiled projectors. This
reduces a feasible scalability of the setup.
A more promising but still partial solution seems to be a projector
array with large overlaps. To reduce color non-uniformity, a fast
automatic photometric and colorimetric state-of-the-art calibration
seems helpful. New light sources like Laser & LED hybrids for DLP
projectors may lead to a much better color consistency and solve the
problem of colorimetric differences in that way.

Multi Touch Interface. The current FTIR multi touch hardware on
the HEyeWall allows acceptable input for tapping or short drags, but
works less reliably for extended drags or more complex interaction.
Possible improvements are a more homogeneous silicone coating, hot
mirrors in front of each projector lens, synchronized pulsed LED light-
ing or the replacement of the lighting setup by line laser modules and
matching narrow bandwidth filters for the cameras. The additional
use of a low powered infrared laser pointer should be considered
for larger scale interactions. Input with a kinect sensor may be an
interesting area for further research.
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7.4 FUTURE WORK
Computer Graphics. One big remaining challenge in rendering al-
gorithms for VR is real time global illumination. This is also important
for the game industry, and continuous efforts are made to come closer
to a unified solution. In that context, more realistic materials will be
important.

Hardware. To improve the level of immersion or presence, reduc-
ing tracking latency and the vergence-accommodation conflict, an
increased field of view and display resolution as well as HDR capa-
bilities may be even more important than a photo realistic rendering.

VR Frameworks. A next step is the development of cross setup
applications. Good software engineering is necessary for a flexible
and easy incorporation of the diverse input hardware. A commonly
accepted configuration for the displays of VEs will help to spread
such applications. instantreality is a partial solution, using the X3D file
format as scene description. Closed source code as well as unfinished
implementation and documentations leave the user dependent on
the support by the few developers.
With better support of the tools that architects use, model export and
lighting workflows will become much more affordable. We expect
architectural previews to eventually become a killer application for
VR.
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of cultural artifacts. In VAST (2007).
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Spatially coherent visualization of image detection results
using video textures. In 33rd Workshop of the Austrian Asso-
ciation for Pattern Recognition (AAPR/OAGM) (2009).
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A.1.1 Conference Talks

This is a list of conference or workshop talks on own work that are
not covered by the list of publications.

• Multi Touch,Winter Augmented RealityMeeting (WARM) 2010
• “The HEyeWall - a 4m x 2m multitouch screen” , Winter Aug-

mented Reality Meeting (WARM) 2009
• DAVE/VR at CGV, Wintergraph 2006

A.1.2 Lectures

• Photo Realism in Computer Graphics, lecture, summer term
2010, with Thomas Schiffer

• Simulation and Animation in Computer Graphics, lecture, sum-
mer term 2009, with Volker Settgast and Eva Eggeling

• Simulation and Animation in Computer Graphics, lecture, sum-
mer term 2008, with Volker Settgast

• Introduction to Photography Artifacts and Computational Pho-
tography, annual talk from 2007 to 2011

• Educational workshops on Virtual Reality were held from 2007
to 2011within theKinderUni and JuniorUni children’s university
programs.

A.2 SUPERVISING ACTIVITIES AND COLLABORATIONS

A.2.1 Supervised Student Theses

The following list summarizes the successfully completed bachelor,
diploma and master theses and master projects supervised by the
author. Some results of this work are partially used as an input for
this thesis.
[Fal11] Falkensteiner A.: Reflective facade display, 2011. Master

project, co-supervised with Sven Havemann.
[FF09] Feuerstein M., Fetzel R.: Multitouch screen, 2009. Bache-

lor’s thesis.
[Fra10] Fraser L.: 3d painting in the dave, 2010. Master’s thesis,

co-supervised with Volker Settgast.
[K0̈7] Köstinger M.: Motion capturing in the dave, 2007. Bache-

lor’s thesis.
[Kan07] Kandlhofer M.: Aquaticworld, 2007. Bachelor’s thesis,

co-supervised with Volker Settgast.
[Kap09] Kapeller G.: Multitouch sketch and gesture recognition,

2009. Bachelor’s thesis.
[Mar10] Marius G.: Image warping for hdr stitching, 2010. Bache-

lor’s thesis.
[Rum09] Rumpler M.: Local image alignment, 2009. Master project.
[SR08] Steiner M., Reiter P.: Virtual glider, 2008. Bachelor’s thesis,

co-supervised with Volker Settgast.
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A.2.2 Collaborations

Much work presented in this thesis was realized in collaboration. The
following list contains collaborators with significant contributions to
the respective projects. It is organized by the chapters in which they
are described in most detail.

2 – Hardware Devices. Animations on BIX media fassade: Volker
Settgast, Lukas Daum, Claus Degendorfer, Lukas Fraser, Harald
Grabner, Bernhard Hohmann, Ferdinand R. Knapitsch-Scarpatetti-
Unterwegen, Christian Kurz, Robert Lanner, Martin Mörth, Jürgen
Oswald, Philipp Reiter, Markus Rumpler, Jörg Schlager, Markus
Steinberger, Marc Steiner, Martin Strobl, Philipp Michael Wagner.
DAVE construction and system: Sven Havemann, Armin Zink né
Hopp, Lars Schimmer, Volker Settgast, Torsten Techmann. Brain
Computer Interface: Robert Leeb, Volker Settgast. HEyeWall Graz
construction and system: Sven Havemann, Lars Schimmer, Volker
Settgast. Stereo rear projectionwall: SvenHavemann, Lars Schimmer,
Torsten Techmann. Car Simulator Concept: Volker Settgast. 3D
optical tracking camera housing: Torsten Techmann. FTIR multi
touch prototype: Richard Fetzel, Markus Feuerstein. HEyeWall
projector mounting: Sven Havemann.

3 – Input: Optical Tracking. Optical 3D tracking: HyosunKim,Mar-
tin Köstinger, Lars Offen.

4 – Output: Image Rendering. Davelib: Dominique Gunia, Sven
Havemann. Projector calibration: Lars Offen, Torsten Techmann,
Torsten Ullrich. Frequency split display: Dieter Fellner, Sven Have-
mann.

5 – User Interaction. Navigation by pose: Christian Ofenböck,
Reinhold Preiner, Marc Steiner. Navigation with BCI: Robert Leeb.
Joystick travel in the DAVE: Volker Settgast. Object manipulation
in the DAVE: Volker Settgast. 2D multi touch object manipulation:
Volker Settgast. Gesture and handwriting with multi touch: Georg
Kapeller.

6 – Applications. Aichi mulit touch information system: Michael
Herchel, David Thompson. Optical flow based image alignment:
Markus Rumpler. Alignment with free-form deformation: Georg
Marius. Autovista video surveillance: Sven Havemann, Bettina
Könighofer, Ullrich Krispel, Peter Roth, Volker Settgast, Philip
Weber. Sensor fusion visualization: Jan Becker. Score four game:
Fraņois Bérard. Multimedia database organizer: Thomas Friedl. Mu-
seum artifact interaction: Sven Havemann, Volker Settgast. Rapid
prototyping framework electronics: Marilyn Lim. MetaDesigner:
Christoph Schinko, Sven Havemann. Architectural visualization:
Volker Settgast. Mesh manipulation in the DAVE: Lukas Fraser.
Generativemodeling in theDAVE: SvenHavemann,WolfgangThaller.
Brute force raytracer: René Zmugg. Cuda raytracer: Thomas Schiffer.
Shader materials: Volker Settgast. Sphere particle shader: Andreas
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Halm. Image based rendering: Ullrich Krispel. Bio browser: An-
dreas Halm, Lars Offen. Quake III arena game port: Christian Ofen-
böck, Reinhold Preiner, Volker Settgast. Aquatic world: Martin
Kandlhofer. Glider: Philipp Reiter, Volker Settgast, Marc Steiner.
Physics engine integration: Volker Settgast. Psychological experi-
ments: Sylvia Kober, Robert Leeb, Volker Settgast. Imitate: Volker
Settgast. Dave demos and workshops: Wolfgang Scheicher, Lars
Schimmer, Volker Settgast, Wolfgang Thaller.
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