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ABSTRACT
With current digital cameras and smartphones, taking photos
and videos has never been easier. However, it is still difficult
to take a photo of a brief action at the right time. In addition,
editing captured videos, such as modifying the playback speed
of some parts of a video, remains a time consuming task.

In this work we investigate how the motion sensors embedded
in mobile devices, such as smartphones, can facilitate camera
control. In particular, we show two families of applications:
automatic camera trigger control for jump photos and auto-
matic playback speed control (video speed ramping) for action
videos. Our approach uses joint devices: a remote camera
takes a photo or a video of the scene and it is controlled by the
motion sensor of a mobile device, either during or after record-
ing. This allows casual users to achieve visually appealing
effects with little effort, even for self portraits.
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INTRODUCTION
Taking photos and videos has become part of our daily life.
Current cameras can capture high quality content in terms of
pixel resolution, video frame rate and depth of field. Taking
a photo or video is as simple as clicking a button. However,
during acquisition a good timing can be difficult to achieve
for a fast or brief motion, such as jump photos. In addition,
editing a captured video, such as modifying its playback speed
to emphasize an action (video speed ramping), can be time
consuming and cumbersome. In this paper we investigate how
motion sensors available on today’s mobile devices (such as
smartphones and smartwatches) can facilitate these two related
tasks of camera control, i.e., automatic camera triggering and
video playback speed control. We now discuss these two
related tasks in more detail.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
MobileHCI ’16, September 06 - 09, 2016, Florence, Italy
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4408-1/16/09...$15.00
DOI: http://dx.doi.org/10.1145/2935334.2935372

manual trigger automatic trigger

Figure 1: Manually triggering the camera for taking a jump
photo is often error prone (see representative result on the
left) and may require several attempts to obtain the desired
photo in practice. In contrast, our approach predicts the time
at which the highest point of the jump will be reached from
motion sensor data and automatically triggers the camera at
the right time, while taking camera delay into account (see
representative result on the right).

Automatic camera trigger control.
Our work on camera triggering is motivated by jump photos.
A jump photo is a great way to express fun and activity during
a trip. However, taking a jump photo at the right time can be a
challenge, and often multiple attempts are required (see Fig. 1).
This is particularly true for smartphones due to relatively long
trigger delays. We demonstrate an automatic trigger that pre-
dicts the time at which the highest point of the jump will be
reached in order to take the photo at the correct time, while
accounting for camera trigger delays. This is achieved with
the motion sensors embedded in a mobile device carried by
the jumping person. We leverage the motion data provided by
the device to predict the time of the highest point and wire-
lessly send it to the remote camera (see Fig. 2). Our approach
deals with any orientation of the camera, works in any lighting
condition and even enables jump self portraits since it runs in
a fully automatic manner.

Video playback speed control.
An additional family of applications with a related technical
solution is an automatic playback speed control of videos
(video speed ramping). This is motivated by the emergence
of consumer grade slow motion cameras (such as the GoPro
cameras and recent smartphones), especially for action videos.



Figure 2: . Our approach leverages motion sensors embedded
in a mobile device (such as a smartphone, in red) to control a
remote camera (in blue), either live or after capture, depending
on the use case.

Slow motion videos are entertaining to watch. Examples are
popular videos with millions of views on YouTube1. However,
the most interesting action might happen in just a fraction of
the video duration, for example when a squash racket hits the
ball. Obviously, it is not entertaining to watch a long slow
motion video if nothing happens for most of the video duration.
It means that the video playback speed should be controlled
according to the action content. The video should be displayed
at a normal speed when there is no action; and during the
interesting action, the playback speed should be smoothly
adjusted to achieve the desired slow motion effect. The usual
way of changing the playback speed of parts of a video is to use
video editing software, but this is time consuming and not an
appropriate solution for casual users. In our work, the person
performing the action (e.g., the squash player) wears a mobile
device recording motion data, and we then use the motion
information to automatically control the playback speed of the
video acquired by a remote camera.

RELATED WORK
Automatic camera triggering can be achieved using additional
non-commonly available hardware such as light barriers or
pressure pads [8]. In contrast, our goal is to facilitate the
process of taking jump photos without specialized hardware.

A solution could be to record a jump in video or burst mode
and then select the frame when the jumping person is at the
highest point. However two main issues exist. First, depending
on the smartphone model, the video resolution and compres-
sion generally lead to an inferior quality compared to photos,
and the frame rate in burst mode may be too low. The second
main issue is the selection of the frame. An approach could be
to let the user manually select the best frame but we aim for a
fully automatic method. A related approach is the Adrenaline
camera [2] that uses crowdsourcing to pick the best frames
from a video by a majority vote. However this requires a
crowd of online workers available 24/7 and this cannot pro-
vide results instantaneously because the image upload and the
voting of the workers take time.

1https://www.youtube.com/user/theslowmoguys

An automatic approach for jump photos is the image analysis
method of Maxwell-Parish [5]: it tracks the jumping person’s
face in a live stream video from a webcam on a computer,
detects when the face location in the image starts falling back
down and triggers the camera. However this approach has
two main limitations. First, the photo will be taken too late
due to the inevitable delays, in particular the camera trigger
delay, which are especially noticeable in a smartphone context.
Moreover, the face tracking and detection can easily fail in
case of bad lighting, motion blur and occlusion. A similar
image analysis method could be applied on a recorded video,
rather than live stream, to select the frame of highest point,
but this would also be sensitive to the errors of face tracking
and detection. In addition, considering the time of the highest
location of the face in the image (i.e., in pixel coordinates)
as the time of the highest point of the jumping person is only
valid for purely vertical jumps in front of the camera due to
perspective effects. In contrast, our approach is applicable for
any jump styles and any camera poses (see Fig. 6d).

To deal with the delays, an approach is to predict the time at
which the highest point will be reached. Garcia et al. [3] track
a person’s face or a small patch on the view screen in real-time
and calculate the person’s velocity to predict the time of the
highest point. They can thus trigger the camera at the right
time while taking the camera delay into account. However,
like the above method, this approach needs to track a person in
the images, which is error prone in practice, and cannot deal
with general jump styles and camera poses.

To overcome the issues of face tracking, jump style and camera
pose, our approach leverages motion data from inertial sensors
embedded in today’s mobile devices. Such data has been
shown to be effective to assist challenging computer vision
tasks, such as 3D reconstruction [9] and video stabilization [1].
Our work explores how motion data can facilitate camera
trigger control and playback speed control.

Various applications made use of motion sensors in the past
with different goals in mind. As an example, the mobile
application "Bump" [10] enables smartphone users to transfer
data between two devices. The transfer is initiated when
the users physically bump their smartphones together, and
the bump is detected and identified with the motion sensor
data. Pfeil et al. [6] demonstrate the triggering of a throwable
panoramic camera ball using an accelerometer sensor. The
user throws the camera ball in the air and the camera takes a
panoramic photo when it reaches its highest position. However,
the price of the current model is high for casual users and the
motion sensor is attached to the camera. Instead, our goal is to
take a photo of a jumping person, i.e., the camera should see
the person and thus should not be attached to the person.

Video speed ramping (i.e., modification of the video play-
back speed) of action footage is a popular effect. However,
only sophisticated video editing programs (such as Adobe
Premiere) have this functionality and may require some train-
ing, which is not appropriate for casual users. We propose a
second application of our motion sensor-based camera control
to automatically adjust the playback speed of a video.

https://www.youtube.com/user/theslowmoguys
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Figure 3: A jump may be divided into three phases. Phase 1: the person lowers to gather momentum. Phase 2: upwards movement
until takeoff. At takeoff the vertical acceleration is integrated to compute the vertical velocity and the time of the highest point
can be predicted (here with an error of about 15ms). Phase 3: during the jump the person is in a free fall state. The ground truth
height is shown for illustration purpose and was obtained by manually annotating the frames of a video sequence which was
simultaneously recorded during this jump.

PROPOSED METHOD

Automatic camera trigger
The key component of our automatic triggering method is to
leverage motion data from the inertial sensors embedded in
mobile devices to predict the time at which the highest point
of a jump will be reached. Let’s note v0 the vertical velocity
(i.e., along the gravity direction) of the jumping person at the
moment of the takeoff. v0 can be computed by integrating
the acceleration of the device. Neglecting the air resistance,
the motion of the jumping person during the jump phase is a
ballistic trajectory. Therefore, the time of the highest point
thighest can be computed by

thighest =
v0

g
, (1)

where g = 9.81m/s2 is the gravity constant [11]. Fig. 3 shows
the timing of a jump with the height, velocity and acceleration.

Computing the time of the highest point
In order to compute the velocity v0, we measure the accelera-
tion ameasured applied to the mobile device with the integrated
three axis accelerometer. When the sensor is at rest, the di-
rection of ameasured is towards the center of the Earth and its
magnitude is ‖ameasured‖ = g = 9.81m/s2. For our purposes
we need the acceleration arelative that causes the device to
change its position. It is computed by

arelative = ameasured −agravity, (2)

where the gravity vector agravity indicates the direction and
magnitude of gravity. It can be obtained using sensor fusion

from accelerometers and gyroscopes and applying a Kalman
filter [4]. For our application running on Android, the devel-
oper API directly provides agravity (from the so-called gravity
sensor).

For jumps executed mostly vertically, the major part of the
measured acceleration is caused by the vertical motion. In the
case of general jumps (e.g., forward jumps), the horizontal
components can have a drastic impact on the predicted time
and thus must be taken into account. Fig. 4 shows a significant
difference between the vertical acceleration and the measured
acceleration for a jump slightly forward. Therefore, to acquire
photos of general jumps (i.e., not only vertical jumps), we need
to know the vertical component of the acceleration avertical .
For this, we project the relative acceleration onto the gravity
vector:

avertical =−
aT

relative agravity

‖agravity‖2
2

agravity. (3)

Then we obtain v0 by integrating ‖avertical‖ before takeoff,
during phases 1 and 2 (Fig. 4). Finally, we can compute thighest
by Equation 1.

Transmission and camera delays
The predicted time of the highest point thighest is transmitted to
the remote camera device. For that purpose, the mobile device
with the internal motion sensor (i.e., carried by the jumping
person) and the camera device are temporally synchronized
before the jump. The Wi-Fi round-trip time of several mes-
sages is measured and the shortest one is used to store the
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Figure 4: Acceleration of a mobile device in the pocket of a
person jumping forward. The total acceleration (pink curve)
is measured. The vertical component of the acceleration (blue
curve) is derived by projecting the computed relative accelera-
tion on the gravitational vector, showing a significant differ-
ence during takeoff.

offset between the internal clocks of the two devices. This ap-
proach allows to send the absolute time and thus avoid timing
issues due to varying transmission delays. In our experiments,
transmitting the value of thighest , in absolute time, over Wi-Fi
takes about 6ms.

The remote camera device is responsible to call the trigger
function in advance, such that the exposure happens at the
predicted time. The trigger delay can actually vary signifi-
cantly due to focusing. That is why, in our implementation,
the camera is focused right before the jump and auto-focusing
is then turned off.

From the moment when the feet leave the ground to the peak
of the jump, there is a duration of about 200-300ms, depending
on the height of the jump. During this duration the prediction,
transmission and camera triggering must occur.

Video playback speed control
Our method for video playback speed control builds upon our
solution for camera triggering. A remote camera (in our case
a GoPro camera) shoots a high frame rate video of an action
and the person performing the action wears a mobile device
recording motion data. The motion data and the video are
synchronized by the timestamp. We recorded videos at 720p,
120fps. The video recording is started by the user from the
mobile device. Once the video is taken, we use the recorded
motion data to control its playback speed automatically. To
prevent false detections such as from shocks or vibrations we
apply a low pass filter on the magnitude of the input accelera-
tion. In our experiments, simple thresholding of this filtered
signal and local maximum extraction led to a successful de-
tection of the interesting action moments (see Fig. 5). Each
detected action moment is played in slow motion over a de-
fault duration of 2 seconds. The rest of the video is played
at a normal speed. To obtain a smooth transition between the
different frame rates, we use the smoothstep function. The
playback speed change is instantaneous and different param-
eters such as motion sensitivity, slow motion time frame and
the transition time between normal speed and slow motion
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Figure 5: Automatic speed ramping of a video of a squash
player hitting the ball. The measured acceleration (blue curve)
of the squash player’s arm is used to automatically detect the
racket hits (orange dots) and control the video playback speed
(orange curve) to show each hit in slow motion. The green
dashed lines indicate the ground truth times of a hit, manually
extracted from the video frames.

can be easily adjusted according to the users’ preferences with
intuitive sliders.

RESULTS
We now present the experimental results. We invite readers
to visit our project webpage2 for the supplementary video,
additional results and our mobile app for smartphones.

Camera trigger for jump photos
We implemented our approach as a mobile app on two Android
smartphones: one used as the remote camera and one as the
motion sensor carried by the jumping person. Wearable de-
vices such as smartwatches and activity trackers could also be
used. The supplementary video shows how our app is used in
practice: from device synchronization to the final jump photo.
It shows that our app is simple to use, runs in a fully automatic
manner and provides visually appealing jump photos.

Fig. 6 shows representative results of jump photos automati-
cally obtained by our app. One may note the range of camera
orientations, lighting conditions, backgrounds and jump styles.
All the results were obtained with a hand-held camera, except
the self portraits of (c) with a camera on a tripod and (d) with
a camera fixed on the backboard above the basketball hoop.
Our method can also acquire photos of objects thrown in the
air, see (g) where the mobile device is inside a plush toy. In
the case of group photos (h), the camera is triggered when the
jumping person carrying the mobile device reaches the highest
point. We can also acquire entertaining photos. For example
in (e), the persons jumped mimicking an explosion that was
then composited with computer graphics content. Another
example is the karate kick (b) where the person on the left
stands still and the person on the right simply jumps vertically.

2http://cgl.ethz.ch/CamControl_MobileHCI2016

http://cgl.ethz.ch/CamControl_MobileHCI2016
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Figure 6: Representative jump photos automatically acquired with our method.
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Figure 7: Quantitative evaluation of our camera trigger method.
(a) Distribution of the temporal error of our method with
respect to the ground truth time. (b) Failure case where the
photo is taken 85ms too early compared to the ground truth
frame shown in (c).

To quantitatively evaluate our method, we used an additional
high frame rate video camera for ground truth acquisition.
From the high frame rate video, we manually selected the
frame where the jumping person is at the highest point and
considered it ground truth. The temporal error te is computed
by te = |tgroundtruth − tpredicted | where tgroundtruth is the time of
the manually selected ground truth video frame and tpredicted
is the time of the highest point predicted by our method. Out
of 13 jump photos, 11 are timed with an error below 60ms
(see Fig. 7a). The maximum error is less than 90ms and
corresponds to the photo shown in Fig. 7b. The corresponding
ground truth frame is shown in Fig. 7c.

Video playback speed control
The video results of our video playback speed control method
are available in the supplementary material. They show that
the desired effects can be obtained easily and successfully. For
example, in the squash video, each hit of the ball is correctly
detected and just before, during and after the hit, the video is
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Figure 8: Distribution of the total user interaction time for
speed ramping an event in a video, including the time for
visual verification of the result.

played in slow motion, emphasizing the hit and omitting the
less interesting time between the hits. While we only recorded
casual scenes, we envision that our approach could also be
used in professional sports training for an automatic video
replay for feedback.

To evaluate our method, we conducted a user study where we
measured the duration needed to modify the playback speed
of sport videos. The tested videos contain different types of
activities (squash, parkour jumps, frisbee and ping pong), ac-
celeration amplitudes and numbers of motion events per video.
A total number of 63 events was used. Five users participated
in the user study and were trained for both Adobe Premiere
and our tool. For a fair comparison, we measured the total user
input time for speed ramping including the verification time
for visually checking the results of each motion event. The
time for Adobe Premiere ranges between 85 and 110 seconds
per motion event. It requires a lot of manual interaction and
is complicated to use, especially for non-experts. In contrast,
our approach is intuitive to use even for casual users and runs
in a fully automatic manner. If needed, we allow the users
to slightly adjust the motion detection threshold and the slow
motion duration via intuitive sliders with instantaneous visual
feedback. Our approach takes between 5 and 35 seconds per



event (including the verification time), which is much less than
with Adobe Premiere (see Fig. 8).

Limitations and future work
A current limitation is the wireless connection range. We
currently use Wi-Fi direct technology to connect the devices
which has a working range of up to 100 meters. However, in
our experiments a distance longer than 10 meters started to
affect accuracy.

For video speed ramping, simple thresholding of the accelera-
tion was sufficient to detect action moments in our experiments.
A promising direction for future work is to use machine learn-
ing and pattern recognition to distinguish and select particular
motions of interest [12, 7]. Acceleration data could also be
combined with the rotational data from the embedded gyro-
scope sensor to detect and distinguish motions like acrobatic
front and back flips.

The motion data from moving persons and objects can allow
to perform other video related tasks such as video summariza-
tion, for example summarizing an hour long video down to
the most interesting and action rich scenes only. We could
imagine a scenario where a video surveillance camera, e.g., a
car dashboard camera, uses a lower frame rate to save hours
of passive recording and automatically saves a high frame rate
sequence if the motion sensors detect some abnormal activity,
for example a sudden deacceleration.

CONCLUSION
In this paper, we investigated how motion data can facilitate
camera control. Our approach leverages the motion sensor
embedded in today’s ubiquitous mobile devices. We explored
the two ends of the camera control spectrum: from the capture
side by automatically triggering the camera, to the viewing
side by adjusting the video playback speed.

On the capture side, our motivation was to acquire jumping
photos at the right time, which is particularly challenging
due to the brevity of the action. We demonstrated that we
can use motion data from mobile devices to predict the time
of the highest position and automatically trigger the remote
camera at this predicted time with wireless communication.
The experiments show that our method is accurate and can be
successfully used in real world scenarios.

On the display side, we demonstrated that motion data can
also be used to control the video playback speed. In particular,
we showed how motion data can facilitate identifying the
action moments of a video and automatically slow down the
playback speed of these moments to emphasize them. The
users can directly watch the enhanced video without having to
use sophisticated video editing programs.

Finally, we believe that motion data from mobile devices opens
many exciting research opportunities for visual content capture

and processing, such as smart autofocusing, depth of field,
camera motion control and visual effects.
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